303
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Gravity Measurements along Commercial Ferry Lines in the Baltic Sea and Their Use for Geodetic Purposes

ORCID Icon, ORCID Icon, , , , ORCID Icon, & show all
Pages 573-602 | Received 08 May 2020, Accepted 14 May 2020, Published online: 09 Jun 2020

References

  • Ågren, J., J. Schwabe, G. Strykowski, C. Förste, E. S. Ince, P. A. Olsson, M. Bilker-Koivula, A. Ellmann, F. Barthelmes, R. Forsberg, et al. 2019. FAMOS Activity 2, Harmonising vertical datum (FAMOS Freja), Improving vessel navigation for the future (FAMOS Odin).
  • Ågren, J., G. Liebsch, J. Mononen, L. Jakobsson, B. Hell, J. Schwabe, and W. Ellmer. 2016a. On the definition and realisation of the Baltic Sea Chart Datum 2000. In 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems, 19–23. Thessaloniki, Greece.
  • Ågren, J., G. Strykowski, M. Bilker-Koivula, O. Omang, S. Märdla, R. Forsberg, A. Ellmann, T. Oja, I. Liepins, E. Parseliunas, et al. 2016b. The NKG2015 gravimetric geoid model for the Nordic-Baltic region. In Gravity, Geoid and Height Systems (GGHS) 2016, September 19–23, Thessaloniki, Greece.
  • Amante, C., and Eakins, B. W. 2009. ETOPO1 arc-minute global relief model: procedures, data sources and analysis.
  • Barthelmes, F., S. Petrovic, C. Foerste, B. Lu, G. Liebsch, J. Schwabe, and W. Ellmer. 2016. Experiences from air- and ship-borne gravity missions. In Poster presentation 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems, Thessaloniki, Greece.
  • Bidel, Y., N. Zahzam, A. Bresson, C. Blanchard, M. Cadoret, A. V. Olesen, and R. Forsberg. 2020. Absolute airborne gravimetry with a cold atom sensor. Journal of Geodesy 94 (2):20. doi: 10.1007/s00190-020-01350-2
  • Bidel, Y., N. Zahzam, C. Blanchard, A. Bonnin, M. Cadore, A. Bresson, D. Rouxel, and M. F. Lequentrec-Lalancette. 2018. Absolute marine gravimetry with matter-wave interferometry. Nature Communications 9 (1):627. doi: 10.1038/s41467-018-03040-2
  • Bilker-Koivula, M., J. Mononen, C. Förste, F. Barthelmes, J. Ågren, B. Lu, and T. Saari. 2017. Improving the geoid model for future GNSS-based navigation in the Baltic Sea. In FIG Working Week 2017, Helsinki, Finland, May–June, 2017. Accessed Febuary 4–2020.
  • Blazhnov, B. 2002. Integrated mobile gravimetric system-development and test results. In 9th Saint Petersburg International Conference on Integrated Navigation Systems, 223–232. St. Petersburg.
  • Böhm, J., B. Werl, and H. Schuh. 2006. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. Journal of Geophysical Research 111:B02406.
  • Förste, C., S. Bruinsma, O. Abrikosov, J. M. Lemoine, J. Marty, F. Flechtner, G. Balmino, F. Barthelmes, and R. Biancale. 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. http://doi.org/10.5880/icgem.2015.1
  • Ince, E. S., C. Förste, F. Barthelmes, and H. Pflug. 2020. Ferry gravimetry data from the EU FAMOS project. GFZ Data Services. doi: 10.5880/GFZ.1.2.2020.001
  • Jekeli, C. 2001. Inertial navigation systems with geodetic applications. Berlin: Walter de Gruyter.
  • Jentzsch, G., R. Schulz, and A. Weise. 2018. Automated Burris gravity meter for single and continuous observation. Geodesy and Geodynamics 9 (3):204–9. doi: 10.1016/j.geog.2017.09.007
  • Johann, F. D.,  Becker, M. Becker, and E. S. Ince. 2020. Multi-scenario evaluation of the direct method in Strapdown Airborne and Shipborne Gravimetry. In 5th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements. International Association of Geodesy Symposia, Springer in review.
  • Krasnov, A. A., A. V. Sokolov, and L. S. Elinson. 2014. Operational experience with the Chekan-AM gravimeters. Gyroscopy and Navigation 5 (3):181–5. doi: 10.1134/S2075108714030079
  • Krasnov, A. A., A. V. Sokolov, and S. V. Usov. 2011. Modern equipment and methods for gravity investigation in hard-to-reach regions. Gyroscopy and Navigation 2 (3):178–83. doi: 10.1134/S2075108711030072
  • Krasnov, A. A., L. P. Nesenyuk, V. G. Peshekhonov, A. V. Sokolov, and L. S. Elinson. 2011. Integrated marine gravimetric system. Development and operation results. Gyroscopy and Navigation 2 (2):75–81. doi: 10.1134/S2075108711020052
  • Krasnov, A., and A. Sokolov. 2015. A modern software system of a mobile Chekan-AM gravimeter. Gyroscopy and Navigation 6 (4):278–87. doi: 10.1134/S2075108715040082
  • Li, M., K. H. Neumayer, F. Flechtner, B. Lu, C. Förste, K. He, and T. Xu. 2019. Performance assessment of multi-GNSS precise velocity and acceleration determination over Antarctica. Journal of Navigation 72 (1):1–18. doi: 10.1017/S0373463318000656
  • Lu, B., F. Barthelmes, L. Min, C. Förste, E. S. Ince, S. Petrovic, F. Flechtner, J. Schwabe, Z. Luo, B. Zhong, et al. 2019. Shipborne gravimetry in the Baltic Sea: Data processing strategies, crucial findings and preliminary geoid determination tests. Journal of Geodesy 93 (7):1059–71. doi: 10.1007/s00190-018-01225-7
  • Lu, B., F. Barthelmes, S. Petrovic, C. Förste, F. Flechtner, Z. Luo, K. He, and M. Li. 2017. Airborne gravimetry of GEOHALO mission: Data processing and gravity field modelling. Journal of Geophysical Research: Solid Earth 122 (12):10–586. doi: 10.1002/2017JB014425
  • Märdla, S., J. Ågren, G. Strykowski, T. Oja, A. Ellmann, R. Forsberg, M. Bilker-Koivula, O. Omang, E. Paršeliūnas, I. Liepinš, et al. 2017. From discrete gravity survey data to a high-resolution gravity field representation in the Nordic-Baltic region. Marine Geodesy 40 (6):416–53. doi: 10.1080/01490419.2017.1326428
  • Nordman, M., J. Kuokkanen, M. Bilker-Koivula, H. Koivula, P. Häkli, and S. Lahtinen. 2018. Geoid validation on the Baltic Sea using ship-borne GNSS Data. Marine Geodesy 41 (5):457–76. doi: 10.1080/01490419.2018.1481160
  • Petrovic, S., F. Barthelmes, and H. Pflug. 2013. 2016: Airborne and Shipborne Gravimetry at GFZ with emphasis on the GEOHALO project. In IAG 150 Years: Proceedings of the IAG Scientific Assembly in Postdam, Germany, ed. C. Rizos and P. Willis, vol. 143, 313–22. International Association of Geodesy Symposia, Springer. doi: 10.1007/1345_2015_17
  • Scintrex. 2018. CG-6 autograv gravity meter operation manual. https://scintrexltd.com/wp-content/uploads/2018/04/CG-6-Operations-Manual-RevB.pdf
  • Sokolov, A. 2011. High accuracy airborne gravity measurements. Methods and equipment. Ifac Proceedings Volumes 44 (1):1889–91. doi: 10.3182/20110828-6-IT-1002.01892
  • Sokolov, A. V., A. A. Krasnov, and L. K. Zheleznyak. 2019. Improving the accuracy of marine gravimeters. Gyroscopy and Navigation 10 (3):155–60. doi: 10.1134/S2075108719030088
  • Varbla, S., A. Ellmann, S. Märdla, and A. Gruno. 2017. Assessment of marine geoid models by ship-borne GNSS profiles. Geodesy and Cartography 43 (2):41–9. doi: 10.3846/20296991.2017.1330771
  • Varbla, S., A. S. Ellmann, and N. Delpeche-Ellmann. 2020. Validation of marine geoid models by utilizing hyrodynamic model and shipborne GNSS profiles. Marine Geodesy 43 (2):134–29. doi: 10.1080/01490419.2019.1701153
  • Weatherall, P., K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, and R. Wigley. 2015. A new digital bathymetric model of the world’s oceans. Earth and Space Science 2 (8):331–45. doi: 10.1002/2015EA000107
  • Wessel, P. 2010. Tools for analyzing intersecting tracks: The x2sys package. Computers & Geosciences 36 (3):348–54. doi: 10.1016/j.cageo.2009.05.009
  • Wessel, P., W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe. 2013. Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union 94 (45):409–1. doi: 10.1002/2013EO450001
  • Zheleznyak, L. K., A. A. Krasnov, and A. V. Sokolov. 2010. Effect of the inertial accelerations on the accuracy of the CHEKAN-AM gravimeter. Izvestiya, Physics of the Solid Earth 46 (7):580–3. doi: 10.1134/S1069351310070025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.