651
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Precise Point Positioning with GNSS Raw Measurements from an Android Smartphone in Marine Environment Monitoring

ORCID Icon, ORCID Icon & ORCID Icon
Pages 274-294 | Received 20 Oct 2021, Accepted 04 Jan 2022, Published online: 25 Jan 2022

References

  • Aggrey, J., S. Bisnath, N. Naciri, G. Shinghal, and S. Yang. 2019. Use of PPP processing for next-generation smartphone GNSS chips: Key benefits and challenges. Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, September 2019, pp. 3862-3878. https://doi.org/https://doi.org/10.33012/2019.17073
  • Alkan, R. M., and T. Ocalan. 2013. Usability of the GPS precise point positioning technique in marine applications. Journal of Navigation 66 (4):579–88.
  • Altuntas, C., and N. Tunalioglu. 2021. Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data. Digital Signal Processing 112 (2021):103011.
  • Banville, S., and F. V. Diggelen. 2016. Precision GNSS for everyone - Precise Positioning using raw GPS measurements from Android Smartphones. GPS World 27:43–48.
  • Berber, M., and W. Wright. 2016. Online kinematic GNSS data processing for small hydrographic surveys. Ocean Engineering 112:335–9.
  • Bezcioğlu, M., C. Ö. Yiğit, and M. N. Bodur. 2019. Kinematik PPP-AR ve Geleneksel PPP Yöntemlerin Performanslarının Değerlendirilmesi: Antarktika Yarımadası Örneği. Afyon Kocatepe University Journal of Sciences and Engineering 19 (1):162–9. (in Turkish).
  • Bisnath, S., and Y. Gao. 2009. Current state of precise point positioning and future prospects and limitations. Observing Our Changing Earth, 615–23. Berlin, Heidelberg: Springer.
  • Boehm, J., B. Werl, and H. Schuh. 2006. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth 111 (B2):1–9.
  • Chen, B., C. Gao, Y. Liu, and P. Sun. 2019. Real-time precise point positioning with a Xiaomi MI 8 android smartphone. Sensors 19 (12):2835.
  • Chen, K., and Y. Gao. 2005. Real-time precise point positioning using single frequency data. Proceedings of ION GNSS, 1514–23. Long Beach, CA.
  • Choy, S., and K. Harima. 2019. Satellite delivery of high-accuracy GNSS precise point positioning service: An overview for Australia. Journal of Spatial Science 64 (2):197–208.
  • Dabove, P., V. Di Pietra, and M. Piras. 2020. GNSS positioning using mobile devices with the android operating system. ISPRS International Journal of Geo-Information 9 (4):220. https://doi.org/https://doi.org/10.3390/ijgi9040220.
  • Elmezayen, A., and A. El-Rabbany. 2019. Precise point positioning using world’s first dual-frequency GPS/GALILEO smartphone. Sensors 19 (11):2593.
  • Elsobeiey, M. 2017. Performance analysis of low-cost single-frequency GPS receivers in hydrographic surveying. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII (4/W5):67–71.
  • Erdogan, B., F. Karlitepe, T. Ocalan, and N. Tunalioglu. 2018. Performance analysis of Real Time PPP for transit of Mercury. Measurement 129:358–67.
  • European GNSS Agency (GSA). 2019. GNSS Market Report. Issue 6. Accessed October 25, 2020. https://www.gsa.europa.eu/system/files/reports/market_report_issue_6_v2.pdf.
  • Geng, J., F. N. Teferle, X. Meng, and A. H. Dodson. 2010. Kinematic precise point positioning at remote marine platforms. GPS Solutions 14 (4):343–50.
  • Guo, L., F. Wang, J. Sang, X. Lin, X. Gong, and W. Zhang. 2020. Characteristics analysis of raw multi-GNSS measurement from Xiaomi Mi 8 and positioning performance improvement with L5/E5 frequency in an urban environment. Remote Sensing 12 (4):744.
  • Héroux, P., Y. Gao, J. Kouba, F. Lahaye, Y. Mireault, P. Collins, K. Macleod, P. Tétreault, and K. Chen. 2004. Products and applications for precise point positioning - moving towards real-time. Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), 1832–43. Long Beach, CA.
  • Humphreys, T. E., M. Murrian, R. Buyya, and A. V. Dastjerdi. 2016. On the Feasibility of cm-accurate positioning via a smartphone’s antenna and GNSS chip. In 2016 IEEE/ION position, location and navigation symposium (PLANS) (pp. 232-242). IEEE.
  • International Hydrographic Organization (IHO). 2020. IHO standards for hydrographic surveys, (S-44). 6th ed. IHO Publication No. 44. https://iho.int/uploads/user/pubs/Drafts/S-44_Edition_6.0.0-Final.pdf
  • Ironside, S. 2018. Changing technologies, changing data uses, changing specifications. IHO standards for hydrographic surveys (S-44). İstanbul: FIG Congress, May 6–11.
  • Kulikov, R., A. Chugunov, and V. Zamolodchikov. 2019. Investigation of collision warning possibilities by means of GNSS receivers of Android smartphones. IOP Conf. Series: Materials Science and Engineering, 695:012013. IOP Publishing.
  • Lagler, K., M. Schindelegger, J. Böhm, H. Krásná, and T. Nilsson. 2013. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters 40 (6):1069–73.
  • Li, X., M. Ge, H. Zhang, and J. Wickert. 2013. A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. Journal of Geodesy 87 (5):405–16.
  • Lipatnikov, L. A., and S. O. Shevchuk. 2019. Cost effective precise positioning with GNSS. FIG Report, 2019 [Electronic resource]. Mode of access: https://www.fig.net/resources/publications/figpub/pub74/Figpub74.pdf.
  • Liu, W., X. Shi, F. Zhu, X. Tao, and F. Wang. 2019. Quality analysis of multi-GNSS raw observations and a velocity-aided positioning approach based on smartphones. Advances in Space Research. 63 (8):2358–77.
  • Marreiros, J. P. R. 2012. Kinematic GNSS Precise Point Positioning: Application to marine platforms. PhD thesis. University Of Porto, Faculty of Sciences.
  • Nie, Z., F. Liu, and Y. Gao. 2020. Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solutions 24 (1):1–11.
  • Ocalan, T., B. Erdogan, N. Tunalioglu, and U. M. Durdag. 2016. Accuracy investigation of PPP method versus relative positioning using different satellite ephemerides products near/under forest environment. Earth Sciences Research Journal 20 (4):1–D4.
  • Odolinski, R., and P. J. G. Teunissen. 2019. An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods. Journal of Geodesy 93 (5):701–22.
  • Odolinski, R., and P. J. G. Teunissen. 2020. Best integer equivariant estimation: Performance analysis using real data collected by low-cost, single- and dual- frequency, multi-GNSS receivers for short- to long-baseline RTK positioning. Journal of Geodesy 94 (9):1–17.
  • Pesyna, K. M., Jr.; R. W. Heath, Jr., and T. E. Humphreys. 2014. Centimeter positioning with a smartphone-quality GNSS antenna. Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2014, 1568–77. Tampa, FL, September 8–12.
  • Robustelli, U., V. Baiocchi, and G. Pugliano. 2019. Assessment of dual frequency GNSS observations from a Xiaomi Mi 8 android smartphone and positioning performance analysis. Electronics 8 (1):91.
  • Siddakatte, R., A. Broumandan, and G. Lachapelle. 2017. Performance evaluation of smartphone GNSS measurements with different antenna configurations. Royal Institute of Navigation International Navigation Conference, Brighton, UK.
  • Wessel, P., and W. H. F. Smith. 1998. New, improved version of Generic Mapping Tools released. EOS Transactions 79 (47):579. https://doi.org/https://doi.org/10.1029/98EO00426.
  • Wu, Q., M. Sun, C. Zhou, and P. Zhang. 2019. Precise point positioning using dual-frequency GNSS observations on smartphone. Sensors 19 (9):2189.
  • Wübbena, G., M. Schmitz, and A. Bagge. 2005. PPP-RTK: Precise point positioning using state-space representation in RTK networks. 18th International Technical Meeting, ION GNSS-05, Long Beach, California, September 13–6.
  • Zumberge, J., M. Heflin, D. Jefferson, M. Watkins, and F. Webb. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth 102 (B3):5005–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.