304
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A Multi-Source Convolutional Neural Network for Lidar Bathymetry Data Classification

, ORCID Icon, &
Pages 232-250 | Received 08 Aug 2021, Accepted 17 Jan 2022, Published online: 04 Feb 2022

References

  • Abdallah, H., N. Baghdadi, J.-S. Bailly, Y. Pastol, and F. Fabre. 2012. Wa-LiD: A new LiDAR simulator for waters. IEEE Geoscience and Remote Sensing Letters 9 (4):744–8.
  • Asmann, A., B. Stewart, and A. M. Wallace. 2021. Deep learning for LiDAR waveforms with multiple returns. 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, January 18–22.
  • Bhagya, D., and M. Suchetha. 2021. A 1-D deformable convolutional neural network for the quantitative analysis of capnographic sensor. IEEE Sensors Journal 21 (5):6672–8.
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–78.
  • Collin, A., B. Long, and P. Archambault. 2010. Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR. Remote Sensing of Environment 114 (3):520–30.
  • Collin, A., B. Long, and P. Archambault. 2012. Merging land-marine realms: Spatial patterns of seamless coastal habitats using a multispectral LiDAR. Remote Sensing of Environment 123:390–9.
  • Collin, A., P. Archambault, and B. Long. 2011. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners. PloS One 6 (6):e21265.
  • Ding, K., Q. Q. Li, J. S. Zhu, C. S. Wang, and X. Fan. 2018. Analysis of diffuse attenuation coefficient spectra of coastal waters of Hainan Island and performance estimation of airborne LiDAR bathymetry. Spectroscopy and Spectral Analysis 38 (5):1582–7.
  • Duan, L., L. L. Xu, X, and W. Di. 2014. A novel full-waveform LiDAR echo decomposition method and simulation verification. IEEE International Conference on Imaging Systems & Techniques, Santorini, Greece, October 14–17.
  • Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of feature detectors. Computer Science 3 (4):212–23.
  • Hu, S., Y. He, B. Tao, J. Yu, and W. Chen. 2019. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry. Infrared and Laser Engineering 48 (11):1113004.
  • Huang, T. C., B. Y. Tao, Z. H. Mao, Y. He, and P. Chen. 2017b. Classification of sea and land waveform based on multi-channel ocean lidar. In Chinese]. Chinese Journal of Lasers 44 (6):0610002.
  • Huang, T., B. Tao, H. Yan, S. Hu, and C. Peng. 2017a. Utilization of multi-channel ocean LiDAR data to classify the types of waveform. Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2017 (10422):104221I.
  • Ji, X., Q. Tang, W. Xu, and J. Li. 2021. Island feature classification for single-wavelength airborne lidar bathymetry based on full-waveform parameters. Applied Optics 60 (11):3055–61.
  • Jie, H., S. Li, S. Gang, and S. Albanie. 2017. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (8):2011–23.
  • Li, Q., J. C. Wang, Y. C. Hang, Z. H. Gao, Y. J. Zhang, and D. J. Jing. 2020. Potential evaluation of China's coastal airborne LiDAR bathymetry based on CZMIL Nova [in Chinese]. Remote Sensing for Land & Resources 32 (1):184–90.
  • Liang, J., K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan. 2006. Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems. Journal of Optics A: Pure and Applied Optics 8 (5):415–22.
  • Lin, C. Y., C. L. Wu, H. F. Ng, and T. K. Shih. 2020. An interpretable visual attention plug-in for convolutions. IEEE Access. 8:136992–7003.
  • Long, H., H. Zheng, and Y. Hu. 2019. Preliminary analysis of operational capability of CZMIL airborne LiDAR sounding system in the Yellow Sea and East China Sea. Journal of Henan Polytechnic University (Natural Science) 38 (2):65–70.
  • Loshchilov, I., and F. Hutter. 2017. SGDR: Stochastic gradient descent with warm restarts. International Conference on Learning Representations (ICLR) 2017 Conference Track, Toulon, France, April 24–26.
  • Michalowska, M., and J. Rapi ́Nski. 2021. A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sensing 13 (3):353–79.
  • Pan, Z., C. Glennie, P. Hartzell, J. Fernandez-Diaz, C. Legleiter, and B. Overstreet. 2015. Performance assessment of high resolution airborne full waveform lidar for shallow river bathymetry. Remote Sensing 7 (5):5133–59.
  • Parrish, C. E., I. Jeong, R. Nowak, D. Robert, and R. B. Smith. 2011. Empirical comparison of full-waveform Lidar algorithms. Photogrammetric Engineering & Remote Sensing 77 (8):825–38.
  • Pérez, J. T., P. Crespo-Peremarch, and L. N. Ruiz. 2018. Assessing the use of discrete, full-waveform LiDAR and TLS to classify Mediterranean forest species composition. Revista de Teledeteccion 52:27–40.
  • Steinvall, O. K., and K. R. Koppari. 1996. Depth sounding lidar: An overview of swedish activities and future prospects. Proceedings of SPIE—The International Society for Optical Engineering.
  • Sun, C., S. Cao, and G. A. Sanchez-Azofeifa. 2019. Mapping tropical dry forest age using airborne waveform LiDAR and hyperspectral metrics. International Journal of Applied Earth Observation and Geoinformation 83 (3):101908.
  • Xing, S., D. Wang, Q. Xu, Y. Lin, P. Li, L. Jiao, X. Zhang, and C. Liu. 2019. A depth-adaptive waveform decomposition method for airborne LiDAR bathymetry. Sensor (Basel, Switzerland) 19 (23):5065.
  • Zhang, Q., Y. N. Wu, and S. C. Zhu. 2018. Interpretable convolutional neural networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, June 18–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.