1,927
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Extracting Coastal Water Depths from Multi-Temporal Sentinel-2 Images Using Convolutional Neural Networks

, &
Pages 615-644 | Received 17 Nov 2021, Accepted 14 Jun 2022, Published online: 05 Jul 2022

References

  • Ai, B., Z. Wen, Z. Wang, R. Wang, D. Su, C. Li, and F. Yang. 2020. Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13:2888–98.
  • Appeldoorn, R., D. Ballantine, I. Bejarano, M. Carlo, M. Nemeth, E. Otero, F. Pagan, H. Ruiz, N. Schizas, C. Sherman, et al. 2016. Mesophotic coral ecosystems under anthropogenic stress: A case study at Ponce, Puerto Rico. Coral Reefs 35 (1):63–75.
  • Auret, L., and C. Aldrich. 2012. Interpretation of nonlinear relationships between process variables by use of random forests. Minerals Engineering 35:27–42.
  • Bauer, L. J., E. Kimberly, K. K. Roberson, M. S. Kendall, S. Tormey, and T. A. Battista. 2012. Shallow-water benthic habitats of southwest Puerto Rico. NOAA Technical Memorandum NOAA NOS NCCOS 155:37. http://aquaticcommons.org/14709/1/SWPR_mapping_final_report_tagged.pdf.
  • Bejarano, I., and R. S. Appeldoorn. 2013. Seawater turbidity and fish communities on coral reefs of Puerto Rico. Marine Ecology Progress Series 474:217–26.
  • Briceño, H. O., and J. N. Boyer. 2015. 2014 Annual Report of the Water Quality Monitoring Project for the Water Quality Protection Program of the Florida Keys National Marine Sanctuary. Miami, Florida: Florida International University.
  • Caballero, I., and R. P. Stumpf. 2019. Retrieval of Nearshore Bathymetry from Sentinel-2A and 2B Satellites in South Florida Coastal Waters. Estuarine, Coastal and Shelf Science 226:106277.
  • Casal, G., P. Harris, X. Monteys, J. Hedley, C. Cahalane, and T. McCarthy. 2020. “ Understanding Satellite-Derived Bathymetry Using Sentinel 2 Imagery and Spatial Prediction Models. GIScience and Remote Sensing 57 (3): 271–286. https://doi.org/10.1080/15481603.2019.1685198.
  • Favoretto, F., Y. Morel, A. Waddington, J. Lopez-Calderon, M. Cadena-Roa, and A. Blanco-Jarvio. 2017. Testing of the 4SM method in the Gulf of California suggests field data are not needed to derive satellite bathymetry. Sensors 17 (10):2248.
  • Gao, J. 2009. Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography: Earth and Environment 33 (1):103–16.
  • Hamylton, S. M., J. D. Hedley, and R. J. Beaman. 2015. Derivation of high-resolution bathymetry from multispectral satellite imagery: A comparison of empirical and optimisation methods through geographical error analysis. Remote Sensing 7 (12):16257–73.
  • Hawaii State Office of Planning. n.d. “Hawaii Statewide GIS.” https://geoportal.hawaii.gov/datasets/.
  • International Hydrographic Organization. 2008. “IHO Standards for Hydrographic Surveys (S-44) 5th Edition.” Monaco: International Hydrographic Bureau. https://iho.int/.
  • Kabiri, K. 2017. Discovering optimum method to extract depth information for nearshore coastal waters from sentinel-2A imagery-case study: Nayband Bay, Iran. International Archives of the Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W4 (4W4):105–10.
  • Kaloop, M. R., M. El-Diasty, J. W. Hu, and F. Zarzoura. 2022. Hybrid artificial neural networks for modeling shallow-water bathymetry via satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 60:1–11.
  • Kanno, A., and Y. Tanaka. 2012. Modified Lyzenga’s method for estimating generalized coefficients of satellite-based predictor of shallow water depth. IEEE Geoscience and Remote Sensing Letters 9 (4):715–9.
  • Kanno, A., Y. Koibuchi, and M. Isobe. 2011. Shallow water bathymetry from multispectral satellite images: Extensions of Lyzenga’s method for improving accuracy. Coastal Engineering Journal 53 (4):431–50.
  • Kanno, A., Y. Tanaka, A. Kurosawa, and M. Sekine. 2013. Generalized Lyzenga’s predictor of shallow water depth for multispectral satellite imagery. Marine Geodesy 36 (4):365–76.
  • Kerr, J. M., and S. Purkis. 2018. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data. Remote Sensing of Environment 210 (210):307–24.
  • Larsen, M. C., and R. M. Webb. 2009. Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico. Journal of Coastal Research 251:189–208.
  • Li, J., D. E. Knapp, M. Lyons, C. Roelfsema, S. Phinn, S. R. Schill, and G. P. Asner. 2021. Automated global shallowwater bathymetry mapping using google earth engine. Remote Sensing 13 (8):1469.
  • Li, X. M., Y. Ma, Z. H. Leng, J. Zhang, and X. X. Lu. 2020. High-accuracy remote sensing water depth retrieval for coral islands and reefs based on LSTM neural network. Journal of Coastal Research 102 (sp1): 21–32. https://doi.org/10.2112/SI102-003.1
  • Li, Y., H. Gao, M. F. Jasinski, S. Zhang, and J. D. Stoll. 2019. Deriving high-resolution reservoir bathymetry from ICESat-2 prototype photon-counting lidar and landsat imagery. IEEE Transactions on Geoscience and Remote Sensing 57 (10):7883–93.
  • Liu, S., L. Wang, H. Liu, H. Su, X. Li, and W. Zheng. 2018. Deriving bathymetry from optical images with a localized neural network algorithm. IEEE Transactions on Geoscience and Remote Sensing 56 (9):5334–42.
  • Lumban-Gaol, Y. A. 2021. “Convolutional Neural Networks for Satellite-Derived Bathymetry.” Delft University of Technology. http://resolver.tudelft.nl/uuid:662ac71f-6373-4128-8eeb-163b8e727b72.
  • Lumban-Gaol, Y. A., K. A. Ohori, and R. Y. Peters. 2021. Satellite-derived bathymetry using convolutional neural networks and multispectral sentinel-2 images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021:201–7.
  • Lyzenga, D. R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics 17 (3):379–83.
  • Lyzenga, D. R. 1985. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing 6 (1):115–25.
  • Lyzenga, D. R., N. P. Malinas, and F. J. Tanis. 2006. Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing 44 (8):2251–9.
  • Ma, Y., N. Xu, Z. Liu, B. Yang, F. Yang, X. H. Wang, and S. Li. 2020. Satellite-derived bathymetry using the ICESat-2 lidar and sentinel-2 imagery datasets. Remote Sensing of Environment 250:112047.
  • Mandlburger, G., M. Kölle, H. Nübel, and U. Soergel. 2021. BathyNet: A deep neural network for water depth mapping from multispectral aerial images. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science 89 (2):71–89.
  • Manessa, M. D. M., A. Kanno, M. Sekine, M. Haidar, K. Yamamoto, T. Imai, and T. Higuchi. 2016. Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery. Geoplanning: Journal of Geomatics and Planning 3 (2):117.
  • Manessa, M. D. M., M. Haidar, M. Hartuti, and D. K. Kresnawati. 2018. Determination of the best methodology for bathymetry mapping using spot 6 imagery: A study of 12 empirical algorithms. International Journal of Remote Sensing and Earth Sciences (IJReSES) 14 (2):127.
  • Mateo-Pérez, V., M. Corral-Bobadilla, F. Ortega-Fernández, and E. P. Vergara-González. 2020. Port bathymetry mapping using support vector machine technique and sentinel-2 satellite imagery. Remote Sensing 12 (13):2069.
  • Mateo-Pérez, V., M. Corral-Bobadilla, F. Ortega-Fernández, and V. Rodríguez-Montequín. 2021. Determination of water depth in ports using satellite data based on machine learning algorithms. Energies 14 (9):2486.
  • Misra, A., Z. Vojinovic, B. Ramakrishnan, A. Luijendijk, and R. Ranasinghe. 2018. Shallow water bathymetry mapping using support vector machine (SVM) technique and multispectral imagery. International Journal of Remote Sensing 39 (13):4431–50.
  • National Centers for Coastal Ocean Science. n.d. “Florida Keys National Marine Sanctuary Digital Atlas.” https://www.arcgis.com/apps/webappviewer/index.html?id=03daf1d686c84ece8172ed394e287c78.
  • National Oceanic and Atmospheric Administration (NOAA). 2017. “Benthic Habitat Mapping in Puerto Rico and the U.S. Virgin Islands for a Baseline Inventory.” 2017. https://coastalscience.noaa.gov/project/benthic-habitat-mapping-puerto-rico-virgin-islands/.
  • Parrish, C. E., L. A. Magruder, A. L. Neuenschwander, N. Forfinski-Sarkozi, M. Alonzo, and M. Jasinski. 2019. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sensing 11 (14):1634.
  • Polcyn, F. C., W. Brown, and I. Sattinger. 1970. “The Measurement of Water Depth by Remote Sensing Techniques.” Ann Arbor, Michigan: The University of Michigan.
  • Puerto Rico Environmental Quality Board (PREQB). 2016. “Puerto Rico 305(b)/303(d) Integrated Report,” no. November: 243. http://www2.pr.gov/agencias/jca/Documents/AreasProgramáticas/AreaCalidaddeAgua/PlanesyProyectosEpeciales/303-305/2014/PuertoRico2014305b303dIntegratedReportAugust2014.pdf.
  • Quadros, N. D. 2016. “Technology in Focus: Bathymetric Lidar.” GIM International, November 2016. https://www.gim-international.com/content/article/technology-in-focus-bathymetric-lidar-2.
  • Sagawa, T., Y. Yamashita, T. Okumura, and T. Yamanokuchi. 2019. Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sensing 11 (10):1155.
  • Sarker, I. H. 2021. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science 2 (160). https://doi.org/10.1007/s42979-021-00592-x.
  • Stumpf, R. P., K. Holderied, and M. Sinclair. 2003. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography 48 (1part2):547–56.
  • Hengel, Van, and D. Spitzer. 1991. “Multi-Temporal Water Depth Mapping by Means of Landsat TM.” International Journal of Remote Sensing 12 (4). https://doi.org/10.1080/01431169108929687.
  • The Hawaii State Department of Health. 2018. 2018 State of Hawaii Water Quality Monitoring and Assessment Report, Honolulu, Hawaii.
  • Tonion, F., F. Pirotti, G. Faina, and D. Paltrinieri. 2020. A machine learning approach to multispectral satellite derived bathymetry. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (3):565–70.
  • Traganos, D., D. Poursanidis, B. Aggarwal, N. Chrysoulakis, and P. Reinartz. 2018. Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2. Remote Sensing 10 (6):859–18.
  • University of Hawaii. 2013. “Ohau Coastal Geology.” 2013. http://www.soest.hawaii.edu/coasts/publications/hawaiiCoastline/oahu.html.
  • Vinayaraj, P., V. Raghavan, and S. Masumoto. 2016. Satellite-derived bathymetry using adaptive geographically weighted regression model. Marine Geodesy 39 (6):458–78.
  • Wang, Z. J., R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng, and D. H. Polo Chau. 2021. CNN Explainer: Learning convolutional neural networks with interactive visualization. IEEE Transactions on Visualization and Computer Graphics 27 (2):1396–406.
  • Wilson, B., N. C. Kurian, A. Singh, and A. Sethi. 2020. Satellite-derived bathymetry using deep convolutional neural network. In International Geoscience and Remote Sensing Symposium (IGARSS).