207
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Compilation of the new detailed geoid model HKGEOID-2022 for the Hong Kong territories

& ORCID Icon
Pages 688-709 | Received 24 Jul 2022, Accepted 09 Sep 2022, Published online: 25 Sep 2022

References

  • Abbak, R. A., L. E. Sjöberg, A. Ellmann, and A. A. Ustun. 2012. Precise gravimetric geoid model in mountainous areas with scarce gravity data – A case study in Central Turkey. Studia Geophysica et Geodaetica 56 (4):909–27. https://doi.org/10.1007/s11200-011-9001-0.
  • Abbak, R. A., and A. Ustun. 2015. A software package for computing a regional gravimetric geoid model by the KTH method. Earth Science Informatics 8 (1):255–65. https://doi.org/10.1007/s12145-014-0149-3.
  • Abdalla, A. 2009. Determination of a gravimetric geoid model of Sudan using the KTH method. MSc thesis, Royal Institute of Technology, Stockholm, Sweden.
  • Abdalla, A., and D. Fairhead. 2011. A new gravimetric geoid model for Sudan using the KTH method. Journal of African Earth Sciences 60 (4):213–21. https://doi.org/10.1016/j.jafrearsci.2011.02.012.
  • Abdalla, A., and R. Tenzer. 2011. The evaluation of the New Zealand’s geoid model using the KTH method. Geodesy and Cartography 37 (1):5–14. https://doi.org/10.3846/13921541.2011.558326.
  • Ågren, J. 2004. Regional geoid determination methods for the era of satellite gravimetry. Doctoral dissertation, Royal Institute of Technology, Stockholm, Sweden.
  • Ågren, J., L. E. Sjöberg, and R. Kiamehr. 2009. The new gravimetric quasigeoid model KTH08 over Sweden. Journal of Applied Geodesy 3 (3):143–53.
  • Electronic and Geophysical Services Ltd. 1991. Regional gravity survey of Hong Kong, Final Report, Job Number HK50190, Hong Kong.
  • Ellmann, A. 2001. Least squares modification of Stokes’ formula with applications to the Estonian geoid. Licentiate thesis, Report No. 1056, Division of Geodesy, Royal Institute of Technology, Stockholm.
  • Ellmann, A. 2004. The geoid for the Baltic countries determined by the least squares modification of Stokes formula. PhD thesis, Royal Institute of Technology (KTH), Division of Geodesy, Stockholm.
  • Ellmann, A. 2005. Computation of three stochastic modifications of Stokes formula for regional geoid determination. Computers & Geosciences 31 (6):742–55.
  • Eshagh, M., and S. Ebadi. 2013. Geoid modelling based on EGM08 and recent Earth gravity models of GOCE. Earth Science Informatics 6 (3):113–25.
  • Evans, R. B. 1990. Hong Kong gravity observation in July 1990 with BGS Lacoste and Romberg meter No. 97 and international connections to IGSN 71. Report, British and Geology Survey, Hong Kong, China.
  • Förste, C., S. Bruinsma, O. Abrikosov, S. Rudenko, J.-M. Lemoine, J.-C. Marty, K. H. Neumayer, and R. Biancale. 2016. EIGEN-6S4: EIGEN-6S4 A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. V. 2.0 [dataset]. GFZ Data Services. https://doi.org/10.5880/icgem.2016.008.
  • Fotopoulos, G. 2003. An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. PhD thesis, UCGE Reports No. 20185, Department of Geomatics Engineering, University of Calgary.
  • Fotopoulos, G. 2005. Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data. Journal of Geodesy 79 (1–3):111–23.
  • Guo, D.-M., H.-Z. Xu, and M. Chen. 2017. Precise geoid determination over Hong Kong from heterogeneous data sets using a hybrid method. Marine Geodesy 40 (2–3):160–71.
  • Heiskanen, W. A., and H. Moritz. 1967. Physical Geodesy. New York, London and San Francisco: W H Freeman and Co.
  • Hinze, W. J. 2003. Bouguer reduction density, why 2.67? Geophysics 68 (5):1559–60.
  • Janak, J., and P. Vaníček. 2005. Mean free-air gravity anomalies in the mountains. Studia Geophysica et Geodaetica 49 (1):31–42. https://doi.org/10.1007/s11200-005-1624-6.
  • Kiamehr, R. 2006. A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: A case study of Iran. Journal of Geodesy 79 (10–11):602–12. https://doi.org/10.1007/s00190-005-0009-5.
  • Kotsakis, C., and M. G. Sideris. 1999. On the adjustment of combined GPS/levelling/geoid networks. Journal of Geodesy 73 (8):412–21. https://doi.org/10.1007/s001900050261.
  • Luo, Z., J. Ning, Y. Chen, and Z. Yang. 2005. High precision geoid models HKGEOID-2000 for Hong Kong and SZGEOID-2000 for Shenzhen, China. Marine Geodesy 28 (2):191–200. https://doi.org/10.1080/01490410590953758.
  • Molodensky, M. S., V. F. Eremeev, and M. I. Yurkina. 1962. Methods for study of the external gravitational field and figure of the Earth (transl. from Russian 1960). Israel Program for Scientific Translations, Jerusalem, 248pp.
  • Moritz, H. 1980. Advanced physical geodesy. Wichmann, Karlsruhe, Abacus press turnbridge wells kent.
  • Nsiah Ababio, A., and R. Tenzer. 2022. The use of gravity data to determine orthometric heights at the Hong Kong territories. Journal Applied Geodesy. https://doi.org/10.1515/jag-2022-0012.
  • Pa’suya, M. F., A. H. M. Din, J. C. McCubbine, A. H. Omar, Z. M. Amin, and N. A. Z. Yahaya. 2019. Gravimetric geoid modelling over Peninsular Malaysia using two different gridding approaches for combining free air anomaly. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42:515–22. https://doi.org/10.5194/isprs-archives-XLII-4-W16-515-2019.
  • Rapp, R. H., and N. K. Pavlis. 1990. The development and analysis of geopotential coefficient models to spherical harmonic degree 360. Journal of Geophysical Research 95 (B13):21885–991. https://doi.org/10.1029/JB095iB13p21885.
  • Sandwell, D., E. Garcia, K. Soofi, P. Wessel, M. Chandler, and W. H. Smith. 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge 32 (8):892–9. https://doi.org/10.1190/tle32080892.1.
  • Sjöberg, L. E. 1984. Least squares modification of Stokes’ and Venning-Meinesz’ formulas by accounting for truncation and potential coefficients errors. Manuscripta Geodaetica 9:209–29.
  • Sjöberg, L. E. 1991. Refined least squares modification of Stokes’ formula. Manuscripta Geodaetica 16:367–75.
  • Sjöberg, L. E. 2001. Topographic and atmospheric corrections of gravimetric geoid model determination with special emphasis on the effects of harmonics of degree zero and one. Journal of Geodesy 75 (5–6):283–90. https://doi.org/10.1007/s001900100174.
  • Sjöberg, L. E. 2003a. A solution to the downward continuation effect on the geoid determination by Stokes’ formula. Journal of Geodesy 77:94–100. https://doi.org/10.1007/s00190-002-0306-1.
  • Sjöberg, L. E. 2003b. Improving modified Stokes formula by GOCE data. Bollettino di Geodesia e Scienze Affini 61 (3):215–25.
  • Sjöberg, L. E. 2003c. A computational scheme to model geoid by the modified Stokes formula without gravity reductions. Journal of Geodesy 77:255–68. https://doi.org/10.1007/s00190-003-0338-1.
  • Sjöberg, L. E. 2003d. A general model of modifying Stokes formula and its Least squares solution. Journal of Geodesy 77:459–64. https://doi.org/10.1007/s00190-003-0346-1.
  • Sjöberg, L. E. 2004. A spherical harmonics representation of the ellipsoidal correction to the modified Stokes formula. Journal of Geodesy 78:180–6. https://doi.org/10.1007/s00190-004-0378-1.
  • Sjöberg, L. E. 2007. Topographic bias by analytical continuation in physical geodesy. Journal of Geodesy 81 (5):345–50.
  • Sjöberg, L. E., A. Gidudu, and R. Ssengendo. 2015. The Uganda gravimetric geoid model 2014 computed by the KTH method. Journal of Geodetic Science 5 (1):35–46. https://doi.org/10.1515/jogs-2015-0007.
  • Sjöberg, L. E., and H. Nahavandchi. 2000. The atmospheric geoid model effects in Stokes’ formula. Geophysical Journal International 140 (1):95–100. https://doi.org/10.1046/j.1365-246x.2000.00995.x.
  • Tscherning, C. C., and R. H. Rapp. 1974. Closed covariance expressions for gravity anomalies, geoid undulations and deflections the vertical implied by anomaly degree variance models. Reports of the department of geodetic science No. 208, The Ohio State University.
  • Ulotu, P. 2009. Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH method. Doctoral dissertation, Royal Institute of Technology, Stockholm, Sweden.
  • Wu, Y., Z. Luo, W. Chen, and Y. Chen. 2017. High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques. Earth, Planets and Space 69 (1):34.
  • Yang, Z. J., and Y. Chen. 2001. Determination of the Hong Kong gravimetric geoid. Survey Review 36 (279): 23–34. https://doi.org/10.1179/sre.2001.36.279.23.
  • Zingerle, P., R. Pail, T. Gruber, and X. Oikonomidou. 2019. The experimental gravity field model XGM2019e [dataset]. GFZ Data Serv. https://doi.org/10.5880/ICGEM.2019.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.