709
Views
1
CrossRef citations to date
0
Altmetric
Articles

Low-cost multi-GNSS, single-frequency RTK averaging for marine applications: accurate stationary positioning and vertical tide measurements

ORCID Icon & ORCID Icon
Pages 333-358 | Received 24 Oct 2022, Accepted 25 Apr 2023, Published online: 29 May 2023

References

  • Alkan, R. M., I. M. Ozulu, V. Ilçi, and M. Kahveci. 2015. Single-baseline RTK GNSS Positioning for Hydrographic Surveying. In EGU General Assembly, Vienna, Austria. 1 April 2015.
  • Bartels, J., N. H. Heck, and H. F. Johnston. 1939. The three-hour-range index measuring geomagnetic activity. Journal of Geophysical Research 44 (4):411–54.
  • Bishanth, S., D. Wells, S. Howden, D. Dodd, and D. Wiesenburg. 2004. Development of an operational RTK GPS-equipped buoy for tidal datum determination. International Hydrographic Review 5 (1):54–64.
  • Bisnath, S., D. Wells, M. Santos, and K. Cove. 2004. Initial results from a long baseline, kinematic, differential GPS carrier phase experiement in a marine envrionment. In PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556) , 26–9 April 2004
  • Blick, G. 2018. Joining New Zealand land and sea vertical datums (JLAS). XXVI FIG Congress , Istanbul, 6–11 May 2018.
  • Brissette, M. 2012. Stop using DGPS! The unsuitability of non-centimetric positioning for shallow-water MBES surveys. Hydro International. Lemmer, The Netherlands: Geomares.
  • Canter, P., and L. Lalumiere. 2005. Hydrographic surveying on the ellipsoid with inertially-aided RTK. Applanix. https://www.applanix.com/pdf/POSMV_2005_09_HydrographicSurveying.pdf.
  • Clare, M. A., M. E. Vardy, M. J. Cartigny, P. J. Talling, M. D. Himsworth, J. K. Dix, J. M. Harris, R. J. Whitehouse, and M. Belal. 2017. Direct monitoring of active geohazards: Emerging geophysical tools for deep‐water assessments. Near Surface Geophysics 15 (4):427–44.
  • Cohn, N., D. L. Anderson, T. Susa, P. Ruggiero, D. Honegger, and M. Haller. 2014. Observations of intertidal bars welding to the shoreline: Examining the mechanisms of onshore sediment transport and beach recovery. Proceedings of the American Geophysical Union , Fall Meeting 2014, San Francisco, CA, USA, 15–9 December 2014.
  • Dabove, P. 2019. The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques. Geodesy and Geodynamics 10 (4):282–9.
  • Dean, B. 2014. Evaluation of GNSS-derived tidal information in hydrographic applications. In Hydro14, Aberdeen, Scotland, 28–30.
  • DeLoach, S. R., and B. Remondi. 1991. Decimeter positioning for dredging and hydrographic surveying. In 6. Fort Belvoir, VA: US Army Topographic Engineering Center.
  • DeLoach, S. R. 1995. GPS tides: A project to determine tidal datums with the global positioning system. M.Eng report, Department of Geodesy and Geomatics Engineering Techical Report No. 181, University of New Brunswick, Fredericton, New Brunswick, Canada, 105.
  • Dodd, D., and J. Mills. 2011. Ellipsoidally referenced surveys: Issues and solutions. International Hydrographic Review 6:19–29.
  • Dodd, D., B. Mchaffey, G. Smith, K. Barbor, S. O-Brien, and M. van Norden. 2009. Chart datum transfer using a GPS tide buoy in Chesapeake Bay. International Hydrographic Review (2):39–51.
  • Earth Observing System Data and Information System (EOSDIS). 2018. Multi-GNSS Experiment (MGEX) Navigation Files . NASA's Earth Science Data Systems (ESDS) Program. ftp://ftp.cddis.eosdis.nasa.gov/gnss/data/campaign/mgex/daily/rinex3/2018/brdm
  • Eeg, J. 2004. Verification of the Z-Component in the RTK survey of Drogden Channel. The International Hydrographic Review 5 (2):16–25.
  • Elsobeiey, M. 2017. Performance analysis of low-cost single-frequency Gps receivers in hydrographic surveying. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W5:67–71.
  • European Space Agency (ESA). 2009. EGNOS: European Geostationary Navigation Overlay Service. In. www.esa.int/EGNOS. Online pdf.
  • FIG (International Federation of Surveyors) Commission 4. 2010. Guidelines for the planning, execution and management of hydrographic surveys in ports and harbours. In FIG Publication 56. edited by Working Group Hydrographic Surveying in Practice. Copenhagen, Denmark: International Federation of Surveyors (FIG).
  • Fugro. 2016. MarineStarTM positioning services. Leidschendam, Netherlands: Fugro.
  • Giardina, M. F., M. D. Earle, J. C. Cranford, and D. A. Osiecki. 2000. Development of a low-cost tide gauge. Journal of Atmospheric and Oceanic Technology 17 (4):575–83.
  • He, H. 2010. Quality control of GPS RTK technology in road engineering. 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 26–28 June 2010.
  • International Hydrographic Organization (IHO). 2020. International hydrographic organization standards for hydrographic surveys. In S-44. Edition 6.0.0. Monaco: International Hydrographic Organization.
  • International Hydrographic Organization (IHO). 2021. About the IHO. International Hydrographic Organization (IHO). https://iho.int/en/about-the-iho.
  • Knight, P., C. Bird, A. Sinclair, J. Higham, and A. Plater. 2021. Testing an “IoT” Tide Gauge Network for Coastal Monitoring. IoT 2 (1):17–32.
  • Land Information New Zealand (LINZ). 2022. Standard port tidal levels. Accessed January 2023. https://www.linz.govt.nz/guidance/marine-information/tide-prediction-guidance/standard-port-tidal-levels.
  • Land Information New Zealand (LINZ). 2020. HYSPEC contract specifications for hydrographic surveys version 2.0. Wellington, New Zealand: Land Information New Zealand (LINZ).
  • Langley, R. B., P. J. Teunissen, and O. Montenbruck. 2017. Part A Introduction to GNSS. In Springer handbook of global navigation satellite systems, ed. Peter Teunissen and Oliver Montenbruck, 605–38. Switzerland: Springer International Publishing.
  • Lei, J., F. Li, S. Zhang, C. Xiao, S. Xie, H. Ke, Q. Zhang, and W. Li. 2018. Ocean tides observed from A GPS receiver on floating sea ice near Chinese Zhongshan Station, Antarctica. Marine Geodesy 41 (4):353–67.
  • Ligteringen, T., J. Loog, and L. Dorst. 2014. GNSS Based Hydrographic Surveying clear advantages and hidden obstacles. Paper presented at the European Navigation Conference on GNSS 2014, Rotterdam, NL, April 2014.
  • Lowie, N. 2017. Evaluation of the detection and quantification of sediment plumes caused by dredging activities using a multibeam echousnder . Master of Science in Geology, Faculty of Sciences, Ghent University.
  • Maritime New Zealand (MNZ). 2020. Good practice guidelines for hydrographic surveys in New Zealand harbours and ports. Wellington, New Zealand: Maritime New Zealand, New Zealand Government.
  • Kraft, M., and H. Sternberg. 2019. Optimizing a low-cost multi sensor system for hydrographic depth determination. Hydro-International. Lemmer, The Netherlands: Geomares
  • Matzka, J., C. Stolle, Y. Yamazaki, O. Bronkalla, and A. Morschhauser. 2021. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 19: e2020SW002641. https://agupubs.onlinelibrary.wiley.com/action/showCitFormats?doi=10.1029%2F2020SW002641&mobileUi=0
  • Mills, J., and D. Dodd. 2014. Ellipsoidally referenced surveying for hydrography. In FIG Publication No. 62. Copenhagen, Denmark: International Federation of Surveyors (FIG).
  • Naismith, J. M., G. A. Jeffress, and D. Prouty. 1999. GLONASS and GPS: Redundancy and reliability obtained by combining the two systems. Paper presented at the Dynamic Positioning Conference, Houston, October 1999.
  • Odijk, D. 2017. Part D GNSS algorithms and models. In Springer handbook of global navigation satellite systems, ed. Peter Teunissen and Oliver Montenbruck, 605–38. Switzerland: Springer International Publishing.
  • Odolinski, R., and P. J. G. Teunissen. 2016. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: A low-cost and high-grade receivers GPS-BDS RTK analysis. Journal of Geodesy 90 (11):1255–78.
  • Odolinski, R., and P. J. G. Teunissen. 2017a. Low-cost, high-precision, single-frequency GPS–BDS RTK positioning. GPS Solutions 21 (3):1315–30.
  • Odolinski, R., and P. J. G. Teunissen. 2017b. Low-cost, 4-system, precise GNSS positioning: A GPS, Galileo, BDS and QZSS ionosphere-weighted RTK analysis. Measurement Science and Technology 28 (12):125801.
  • Odolinski, R., and P. J. G. Teunissen. 2019. An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods. Journal of Geodesy 93 (5):701–22.
  • Odolinski, R., and P. J. G. Teunissen. 2020. Best integer equivariant estimation: Performance analysis using real data collected by low-cost, single- and dual-frequency, multi-GNSS receivers for short- to long-baseline RTK positioning. Journal of Geodesy 94, 91. https://link.springer.com/article/10.1007/s00190-020-01423-2#citeas
  • Odolinski, R., P. J. G. Teunissen, and D. Odijk. 2015. Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions 19 (1):151–63.
  • Sanders, P. 2003. RTK tide basics. Hydro International 7 (10):26–9.
  • Specht, M., C. Specht, H. Lasota, and P. Cywiński. 2019. Assessment of the steering precision of a hydrographic unmanned surface vessel (USV) along sounding profiles using a low-cost multi-global navigation satellite system (GNSS) receiver supported autopilot. Sensors 19 (18):3939.
  • Schimel, A. C., D. Ierodiaconou, L. Hulands, and D. M. Kennedy. 2015. Accounting for uncertainty in volumes of seabed change measured with repeat multibeam sonar surveys. Continental Shelf Research 111:52–68.
  • Teunissen, P. J. G. 1995. The least squares ambiguity decorrelation adjustment: A method for fast GPS integer estimation. Journal of Geodesy.70 (1-2):65–82.
  • Teunissen, P. J. G. 2019. A new GLONASS FDMA model. GPS Solutions 23 (4):100.
  • Thom, J., R. Odolinski, L. McDonald, and P. Denys. 2019. On the use of between-baseline differenced and instantaneous RTK positioning while using simultaneous GNSS measurements. Survey Review 51 (367):345–53.
  • Tradacete, M., Á. Sáez, J. F. Arango, C. G. Huélamo, P. Revenga, R. Barea, E. López-Guillén, and L. M. Bergasa. 2019. Positioning system for an electric autonomous vehicle based on the fusion of multi-GNSS RTK and odometry by using an extented kalman filter. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Cham, CH: Springer.
  • Trimble. 2014. Trimble R10 GNSS receiver user guide. Ed. by Trimble Navigation Limited. Vol. Version 1.10, Revision B. Sunnyvale, CA.
  • Tussock Innovation. 2018. LS1 remote water level sensor datasheet. Tussock Innovation. https://help.waterwatch.io/article/3-ls1-water-level-sensor-datasheet.
  • US Army Corps of Engineers (USACE). 2013. Engineering and design – Hydrographic surveying. In Enginner manual EM 1110-2-1003 . Washington, DC, United States of America.
  • Wells, D. E., and A. Kleusberg. 1992. Feasibility of a kinematic differential global positioning system, technical report DRP-91-1. In Dredging research program. University of New Brunswick. Fredericton, New Brunswick, Canada: Department of the Army, US Army Corps of Engineers (USACE).