504
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Metal Reduction at Low pH by a Desulfosporosinus species: Implications for the Biological Treatment of Acidic Mine Drainage

, , , &
Pages 71-82 | Received 07 Jul 2009, Accepted 29 Oct 2009, Published online: 19 Feb 2009

REFERENCES

  • Adams , L K , Harrison , J M , Lloyd , J R , Langley , S and Fortin , D . 2007 . Activity and diversity of Fe(III)-reducing bacteria in a 3000-year-old acid mine drainage site analogue . Geomicrobiol J , 24 : 295 – 305 .
  • Akagi , J M and Jackson , G . 1967 . Degradation of glucose by proliferating cells of Desulfotomaculum nigrificans . Appl Microbiol , 15 : 1427 – 1430 .
  • Altschul , S F , Madden , T L , Schaffer , A A , Zhang , J , Zhang , Z , Miller , W and Lipman , D J . 1997 . Gapped BLAST and PSI-BLAST: a new generation of protein database search programs . Nucl Acid Res , 25 : 3389 – 3402 .
  • Amonette , J E , Russell , C K , Carosino , K A , Robinson , N L and Ho , J T . 2003 . Toxicity of Al to Desulfovibrio desulfuricans . Appl Environ Microbiol , 69 : 4057 – 4066 .
  • Baker , B J and Banfield , J F . 2003 . Microbial communities in acid mine drainage . FEMS Microbiol Ecol , 44 : 139 – 152 .
  • Beyenal , H , Sani , R K , Peyton , B M , Dohnalkova , A C , Amonette , J E and Lewandowski , Z . 2004 . Uranium immobilization by sulfate-reducing biofilms . Environ Sci Technol , 38 : 2067 – 2074 .
  • Bilgin , A A , Silverstein , J and Jenkins , J D . 2004 . Iron respiration by Acidiphilium cryptum at pH 5 . FEMS Microbiol Ecol , 49 : 137 – 143 .
  • Brina , R and Miller , A G . 1992 . Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry . Anal Chem , 64 : 1413 – 1418 .
  • Brooks , S C . 2001 . Waste characteristics of the former S-3 ponds and outline of uranium chemistry relevant to NABIR Field Research Center studies , Oak Ridge, Term : NABIR Field Research Center .
  • Brooks , S C , Fredrickson , J K , Carroll , S L , Kennedy , D W , Zachara , J M , Plymale , A E , Kelly , S D , Kemner , K M and Fendorf , S . 2003 . Inhibition of bacterial U(VI) reduction by calcium . Environ Sci Technol , 37 : 1850 – 1858 .
  • Burdige , D J and Nealson , K H . 1986 . Chemical and microbiological studies of sulfide-mediated manganese reduction . Geomicrobiol J , 4 : 361 – 387 .
  • Champagne , P , Van Geel , P and Parker , W . 2005 . A bench-scale assessment of a combined passive system to reduce concentrations of metals and sulfate in acid mine drainage . Mine Water Environ , 24 : 124 – 133 .
  • Chandler , D P , Jarrell , A E , Roden , E E , Golova , J , Chernov , B , Schimpa , M J , Peacock , A D and Long , P E . 2006 . Suspension array analysis of 16S rRNA from Fe- and SO42−-reducing bacteria in uranium-contaminated sediments undergoing bioremediation . Appl Environ Microbiol , 72 : 4672 – 4687 .
  • Chang , Y-J , Peacock , A D , Long , P E , Stephen , J R , McKinley , J P , Macnaughton , S J , Anwar Hussain , A KM , Saxton , A M and White , D C . 2001 . Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site . Appl Environ Microbiol , 67 : 3149 – 3160 .
  • Christensen , B , Laake , M and Lien , T . 1996 . Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment . Water Res , 30 : 1617 – 1624 .
  • Church , C D , Wilkin , R T , Alpers , C N , Rye , R O and McClesky , R B . 2007 . Microbial sulfate reduction and metal attenuation in pH 4 acid mine water . Geochem Trans , 8 : 10
  • Cline , J D . 1969 . Spectrophotometric determination of hydrogen sulfide in natural waters . Limnol Oceanogr , 14 : 454 – 458 .
  • Cole , J R , Chai , B , Marsh , T L , Farris , R J , Wang , Q , Kulam , S A , Chandra , S , McGarrell , D M , Schmidt , T M , Garrity , G M and Tiedje , J M . 2003 . The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy . Nucl Acids Res , 31 : 442 – 443 .
  • Cravotta , C A III . 2008 . Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations . Appl Geochem , 23 : 166 – 202 .
  • Daniels , L. , Hanson , R. S. and Phillips , J. A. 1994 . “ Chemical composition ” . In Methods for General and Molecular Bacteriology , Edited by: Gerhardt , P . 512 – 554 . Washington, DC : American Society for Microbiology .
  • Daubert , L N and Brennan , R A . 2007 . Passive remediation of acid mine drainage using crab shell chitin . Environ Eng Sci , 24 : 1475 – 1480 .
  • Daumas , S , Cord-Ruwisch , R and Garcia , J L . 1988 . Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal groundwater . Anto van Leeuwen , 54 : 165 – 178 .
  • Dean , J A . 1985 . Lange's Handbook of Chemistry. , 13 th ed , New York : McGraw-Hill .
  • Drummond , A J , Ashton , B , Cheung , M , Heled , J , Kearse , M , Moir , R , Stones-Havas , S , Thierer , T and Wilson , A . 2007 . Geneious v3.0 Available from http://www.geneious.com/
  • Elias , D E , Senko , J M and Krumholz , L R . 2003a . A procedure for the quantitation of total oxidized uranium for bioremediation studies . J Microbiol Meth , 53 : 343 – 353 .
  • Elias , D A , Krumholz , L R , Wong , D , Long , P E and Suflita , J M . 2003b . Characterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings . Microb Ecol , 46 : 83 – 91 .
  • Fauville , A , Mayer , B , Frommichen , R , Friese , K and Veizer , J . 2004 . Chemical and isotopic evidence for accelerated bacterial sulphate reduction in acid mining lakes after addition of organic carbon: laboratory batch experiments . Chem Geol , 204 : 325 – 344 .
  • Feng , Q , Liu , L and Yanagisawa , K . 2000 . Effects of synthesis parameters on the formation of birnessite-type manganese oxides . J Mat Sci Lett , 19 : 1567 – 1570 .
  • Fischer , J , Quentmeier , A , Gansel , S , Sabados , V and Friedrich , C G . 2002 . Inducible aluminum resistance of Acidiphilium crytum and aluminum tolerance of other acidophilic bacteria . Arch Microbiol , 178 : 554 – 558 .
  • Garcia-Moyano , A , González-Toril , E , Aguilera , A and Amils , R . 2007 . Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain) . Syst Appl Microbiol , 30 : 601 – 614 .
  • Geissler , A and Selenska-Pobell , S . 2005 . Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community . Geobiology , 3 : 275 – 285 .
  • Geller , W , Klapper , H and Salomons , W . 1998 . Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation , 435 Berlin : Springer .
  • Gemmell , R T and Knowles , C J . 2000 . Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic compounds and heavy metals . FEMS Microbiol Lett , 192 : 185 – 190 .
  • Gustafsson , J P . 2007 . Visual MINTEQ ver 2.52 Available at http://www.lwr.kth.se/English/OurSoftware/vminteq/
  • Hamel , R , Levasseur , R and Appanna , V D . 1999 . Oxalic acid production and aluminum tolerance in Pseudomonas fluorescens . J Inorg Biochem , 76 : 99 – 104 .
  • Hard , B C , Friedrich , S and Babel , W . 1997 . Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria . Microbiol Res , 152 : 65 – 73 .
  • Herlihy , A T and Mills , A L . 1985 . Sulfate reduction in freshwater sediments receiving acid mine drainage . Appl Environ Microbiol , 49 : 179 – 186 .
  • Istok , J D , Senko , J M , Krumholz , L R , Watson , D , Bogle , M-A , Peacock , A , Chang , Y-J and White , D C . 2003 . In-situ bio-reduction of technetium and uranium in a nitrate-contaminated aquifer . Environ Sci Technol , 38 : 468 – 475 .
  • Jin , S , Fallgren , P H , Morris , J M and Gossard , R B . 2008 . Biological source treatment of acid mine drainage using microbial and substrate emendments: microcosm studies . Mine Water Environ , 27 : 20 – 30 .
  • Johnson , D B . 1995 . Selective solid media for isolating and enumerating acidophilic bacteria . J Microbiol Meth , 23 : 205 – 218 .
  • Johnson , D B . 2002 . Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines . Water Soil Air Pollut , 3 : 47 – 66 .
  • Johnson , D B and Hallberg , K B . 2002 . Pitfalls of passive mine water treatment. Re/Views Environ . Sci Bio/Technol , 1 : 335 – 343 .
  • Johnson , D B and Hallberg , K B . 2005a . Acid mine drainage treatment options: a review . Sci Tot Environ , 338 : 3 – 14 .
  • Johnson , D B and Hallberg , K B . 2005b . Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system . Sci Tot Environ , 338 : 81 – 93 .
  • Johnson , D B and McGinness , S . 1991 . Ferric iron reduction by acidophilic heterotrophic bacteria . Appl Environ Microbiol , 57 : 207 – 211 .
  • Johnson , D B , Sen , A M , Kimura , S , Rowe , O F and Hallberg , K B . 2006 . Novel biosulfidogenic system for selective recovery of metals from acidic leach liquors and waste streams . Trans Inst Min Metall C , 115 : 19 – 24 .
  • Kawai , F , Zhang , D and Sugimoto , M . 2000 . Isolation and characterization of acid- and Al-tolerant microorganisms . FEMS Microbiol Lett , 189 : 143 – 147 .
  • Kimura , S , Hallberg , K B and Johnson , D B . 2006 . Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria . Biodegradation , 17 : 2022 – 2030 .
  • Kirby , C S , Thomas , H M , Southam , G and Donald , R . 1999 . Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage . Appl Geochem , 14 : 511 – 530 .
  • Klemps , R , Cypionka , H , Widdel , F and Pfennig , N . 1985 . Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species . Arch Microbiol , 143 : 203 – 208 .
  • Koschorreck , M , Bozau , E , Frommichen , R , Geller , W , Herzsprung , P and Wendt-Potthoff , K . 2007 . Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm . Environ Sci Technol , 41 : 1608 – 1614 .
  • Küsel , K , Dorsch , T , Acker , G and Stackenbrandt , E . 1999 . Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling reduction of Fe(III) to oxidation of glucose . Appl Environ Microbiol , 65 : 3633 – 3640 .
  • Küsel , K , Roth , U , Trinkwalter , T and Peiffer , S . 2001 . Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments . Environ Experiment Bot , 46 : 213 – 223 .
  • La , H-J , Kim , K-H , Quan , Z-X , Cho , Y-G and Lee , S-T . 2003 . Enhancement of sulfate reduction activity using granular sludge in anaerobic treatment of acid mine drainage . Biotechnol Lett , 25 : 503 – 508 .
  • Lane , D J . 1991 . “ 16S/23S rRNA sequencing ” . In Nucleic Acid Techniques in Bacterial Systematics , Edited by: Stackebrandt , E and Goodfellow , M . 115 – 175 . New York : Wiley .
  • Landa , E R . 2004 . Uranium mill tailings: nuclear waste and natural laboratory for geochemical and radioecological investigations . J Environ Radioactivity , 77 : 1 – 27 .
  • Lovley , D R and Phillips , E JP . 1986 . Organic matter mineralization with reduction of ferric iron in anaerobic sediments . Appl Environ Microbiol , 51 : 683 – 689 .
  • Lovley , D R and Phillips , E JP . 1987 . Rapid assay for microbially reducible ferric iron in aquatic sediments . Appl Environ Microbiol , 53 : 1536 – 1540 .
  • Lovley , D R and Phillips , E JP . 1992 . Bioremediation of uranium contamination with enzymatic uranium reduction . Enviroa Sci Technol , 26 : 2228 – 2234 .
  • Lovley , D R , Roden , E E , Phillips , E JP and Woodward , J C . 1993 . Enzymatic iron and uranium reduction by sulfate-reducing bacteria . Marine Geol , 113 : 41 – 53 .
  • Lovley , D R , Stolz , J F , Nord , G L and Phillips , E JP . 1987 . Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism . Nature , 330 : 252 – 254 .
  • Luptakova , A and Kusnierva , M . 2005 . Bioremediation of acid mine drainage contaminated by SRB . Hydrometallurgy , 77 : 97 – 102 .
  • Madigan , M T , Martinko , J M and Parker , J . 1997 . Brock Biology of Microorganisms , 986 Upper Saddle River, NJ : Prentice Hall .
  • Martinez Murillo , F , Gugliuzza , T , Senko , J , Basu , P and Stolz , J F . 1999 . A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens . Arch Microbiol , 172 : 313 – 320 .
  • Morris , P R and Ingledew , W J . 1992 . “ Acidophilic bacteria: adaptations and applications ” . In Molecular Biology and Biotechnology of Extremophiles , Edited by: Herber , R A and Sharp , R J . 115 – 142 . New York : Chapman & Hall .
  • Muyzer , G and Stams , J M . 2008 . The ecology and biotechnology of sulphate-reducing bacteria . Nature Rev Microbiol , 6 : 441 – 454 .
  • Nengovhelva , N R , Strydom , C A , Maree , J P and Greben , H A . 2004 . Chemical and biological oxidation of iron in acid mine water . Mine Water Environ , 23 : 76 – 80 .
  • Nevin , K P , Finneran , K T and Lovley , D R . 2003 . Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment . Appl Environ Microbiol , 69 : 3672 – 3675 .
  • Nicormat , D , Dick , W A and Tuovinen , O H . 2006 . Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage . Microbial Ecol , 51 : 83 – 89 .
  • Nordstrom , D K and Alpers , C N . 1999 . “ Geochemistry of acid mine waters ” . In The Environmental Geochemistry of Mineral Deposits. Part A: Processes, Techniques, and Health Issues , Edited by: Plumlee , G S and Logson , M J . 133 – 160 . Littleton, CO : The Society of Economic Geologists .
  • Olivier , B , Cord-Ruwisch , R , Hatchikian , E C and Garcia , J L . 1988 . Characterization of Desulfovibrio fructosavorans sp. nov . Arch Microb , 149 : 447 – 450 .
  • Oremland , R S and Capone , D G . 1988 . Use of “specific” inhibitors in biogeochemistry and microbial ecology . Adv Microb Ecol , 10 : 285 – 383 .
  • Peacock , A D , Chang , Y-J , Istok , J D , Krumholz , L , Geyer , R , Kinsall , B , Watson , D , Sublette , K L and White , D C . 2004 . Utilization of microbial biofilms as monitors of bioremediation . Microbial Ecol , 47 : 284 – 292 .
  • Pennsylvania Department of Environmental Protection (PA-DEP) . 1999 . The Science of Acid Mine Drainage and Passive Treatment , PA-DEP publication, Bureau of Abandoned Mine Reclamation .
  • Ramamoorthy , S , Sass , H , Langer , H , Schumann , P , Kroppenstedt , R M , Spring , S , Overmann , J and Rosenzweig , R F . 2006 . Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine lake sediments . Inter J Syst Evol Microbiol , 56 : 2729 – 2736 .
  • Rampinelli , L R , Azevedo , R D , Teixeira , M C , Guerra-Sa , R and Leao , V A . 2008 . A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions . Biodegradation , DOI: 10.1007/sl0532-007-9166-y
  • Reichenbecher , W and Schink , B . 1997 . Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyquinone (1,2,4-trihydroxybenzene) . Arch Microbiol , 168 : 338 – 344 .
  • Robertson , W J , Bowman , J P , Franzmann , P D and Mee , B J . 2001 . Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasoline-contaminated groundwater . Internal J Syst Evol Microbiol , 56 : 2729 – 2736 .
  • Rowe , O F , Sanchez-Espana , J , Hallberg , K B and Johnson , D B . 2007 . Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems . Environ Microbiol , 9 : 1761 – 1771 .
  • Sass , A , Rutters , H , Cypionka , H and Sass , H . 2002 . Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides . Arch Microbiol , 177 : 468 – 474 .
  • Sass , H , Overmann , J , Rutters , H , Babenzien , H-D and Cypionka , H . 2004 . Desulfosporomusa polytropha gen. nov, sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake . Arch Microbiol , 182 : 204 – 211 .
  • Saunders , J A and Toran , L E . 1995 . Modelling of radionuclide and heavy metal sorption around low- and high-pH waste disposal sites at Oak Ridge, Tennessee . Appl Geochem , 10 : 673 – 684 .
  • Selenska-Pobell , S , Kampf , G , Flemming , K , Radeva , K and Satchanska , G . 2001 . Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval . Antonie von Leeuwen , 79 : 149 – 161 .
  • Senko , J M , Wanjugi , P , Lucas , M , Bruns , M A and Burgos , W D . 2008 . Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coal mine drainage-impacted sites . ISME J , 2 : 1134 – 1145 .
  • Shelobolina , E S , O'Neill , K , Finneran , K T , Hayes , L A and Lovley , D R . 2003 . Potentials for in situ bioremediation of a low-pH, high-nitrate uranium-contaminated groundwater . Soil Sed Contam , 12 : 865 – 884 .
  • Spain , A M , Peacock , A D , Istok , J D , Elshahed , M S , Najar , F Z , Roe , B A , White , D C and Krumholz , L R . 2007 . Identification and isolation of a Castellaniella species important during biostimulation of an acidic nitrate- and uranium-contaminated aquifer . Appl Environ Microbiol , 73 : 4892 – 4904 .
  • Stewart , B D , Neiss , J and Fendorf , S . 2007 . Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium . J Environ Qual , 36 : 363 – 372 .
  • Suwalsky , M , Norris , B , Kiss , T and Zatta , P . 2002 . Effects of AMID speciation on cell membranes and molecular models . Coord Chem Rev , 228 : 285 – 295 .
  • Suzuki , Y , Kelly , S D , Kemner , K M and Banfield , J F . 2003 . Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment . Appl Environ Microbiol , 69 : 1337 – 1346 .
  • Suzuki , Y , Kelly , S D , Kemner , K M and Banfield , J F . 2004 . Enzymatic U(VI) reduction by Desulfosporosinus species . Radiochim Acta , 92 : 11 – 16 .
  • Tanner , R . 1997 . “ Cultivation of bacteria and fungi ” . In Manual of Environmental Microbiology , Edited by: Hurst , C J , Knudsen , G R , Mclnerney , M J , Stetzenbach , L D and Walter , M V . 52 – 60 . Washington, DC : American Society for Microbiology .
  • Tarutis , W J Jr and Unz , R F . 1995 . Iron and manganese release in coal mine drainage wetland microcosms . Water Sci Technol , 32 : 187 – 192 .
  • Tarutis , W J Jr , Unz , R F and Brooks , R P . 1992 . Behavior of sedimentary Fe and Mn in a natural wetland receiving acidic mine drainage, Pennsylvania, USA . Appl Geochem , 7 : 77 – 85 .
  • Thompson , J D , Higgins , D G and Gibson , T J . 1994 . CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice . Nucl Acids Res , 22 : 4673 – 4680 .
  • Trinkerl , M , Breunig , A , Schauder , R and Konig , H . 1990 . Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite . System Appl Microbiol , 13 : 372 – 377 .
  • Tsukamoto , T K , Kilion , F IA and Miller , G C . 2004 . Column experiments for microbiological treatment of acid mine drainage: low temperature, low pH and matrix investigations . Water Res , 38 : 1405 – 1418 .
  • Turtle , J H , Dugan , P R , MacMillan , C B and Randies , C I . 1969 . Microbial dissimilatory sulfur cycle in acid mine water . J Bacteriol , 97 : 594 – 602 .
  • Ulrich , G A , Martino , D , Burger , K , Routh , J , Grossman , E L , Ammerman , J W and Suflita , J M . 1998 . Sulfur cycling in the terrestrial subsurface: commensial interactions, special scales, and microbial heterogeneity . Microb Ecol , 36 : 141 – 151 .
  • Unz , R F , Olem , H and Wichlacz , B S . 1979 . Microbiological ferrous iron oxidation in acid mine drainage . Proc Biochem , 14 : 2 – 6 . 28
  • Vail , W J and Riley , R K . 2000 . The Pyrolusite Process™: a bioremediation process for the abatements of acid mine drainage . Green Lands , 30 : 40 – 47 .
  • Wall , J D and Krumholz , L R . 2006 . Uranium reduction . Ann Rev Microbiol , 60 : 149 – 166 .
  • Wong , D , Suflita , J M , McKinley , J P and Krumholz , L R . 2004 . Impact of clay minerals on sulfate-reducing activity in aquifers . Microb Ecol , 47 : 80 – 86 .
  • Wu , W-M , Carley , J , Fienen , M , Melhorn , T , Lowe , K , Nyman , J , Luo , J , Gentile , M E , Rajan , R , Wagner , D , Hickey , R F , Gu , B , Watson , D , Cirpka , O A , Kitandis , P K , Jardine , P M and Criddle , C S . 2006 . Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone . Environ Sci Technol , 40 : 3978 – 3985 .
  • Zellner , G , Messner , P , Kneifel , H and Winter , J . 1989 . Desulfovibrio simplex spec, nov., a new sulfate-reducing bacterium from a sour whey digester . Arch Microbiol , 152 : 329 – 334 .
  • Zhang , G , Dong , H , Kim , J and Eberl , D D . 2007 . Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its roles in promoting the smectite to illite reaction . Am Mineral , 92 : 1411 – 1419 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.