168
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Microbial Community Structure, Terminal Electron Accepting Conditions, and Molybdate on the Extent of U(VI) Reduction in Landfill Aquifer Sediments

, &
Pages 430-443 | Received 01 Feb 2010, Accepted 12 May 2010, Published online: 26 Jul 2011

REFERENCES

  • Abdelouas , A , Lutze , W , Gong , W , Nuttall , E H , Strietelmeier , B A and Travis , B J . 2000 . Biological reduction of uranium in groundwater and subsurface soil . Sci Total Environ , 250 : 21 – 35 .
  • Akob , D M , Mills , H J , Gihring , T M , Kerkhof , L , Stucki , J W , Anastacio , A S , Chin , K J , Kusel , K , Palumbo , A V , Watson , D B and Kostka , J E . 2008 . Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments . Appl Environ Microbiol , 74 : 3159 – 3170 .
  • Anderson , R T , Vrionis , H A , Ortiz-Bernad , I , Resch , C T , Long , P E , Dayvault , R , Karp , K , Marutzky , S , Metzler , D R , Peacock , A , White , D C , Lowe , M and Lovley , D R . 2003 . Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer . Appl Environ Microbiol , 69 : 5884 – 5891 .
  • Baldwin , B R , Peacock , A D , Park , M , Ogles , D M , Istok , J D , McKinley , J P , Resch , C T and White , D C . 2008 . Multilevel samplers as microcosms to assess microbial response to biostimulation . Ground Water , 46 : 295 – 304 .
  • Balkwill , D L , Leach , F R , Wilson , J T , McNabb , J F and White , D C . 1988 . Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments . Microb Ecol , 16 : 73 – 84 .
  • Basu , S K , Oleszkiewicz , J A and Sparling , R . 2005 . Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol . Environ Technol , 26 : 1383 – 1391 .
  • Beeman , R E and Suflita , J M . 1987 . Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate . Microb Ecol , 14 : 39 – 54 .
  • Behrends , T and Van Cappellen , P . 2005 . Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions . Chem Geol , 220 : 315 – 327 .
  • Bligh , E G and Dryer , W J . 1954 . A rapid method of total lipid extraction and purification . Can J Biochem Physiol , 37 : 911 – 917 .
  • Boonchayaanant , B , Gu , B , Wang , W , Ortiz , M E and Criddle , C S . 2009 . Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium? . Biodegradation , 21 : 81 – 95 .
  • Cappenberg , TE. 1974 . Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments . Antonie Van Leeuwenhoek , 40 : 297 – 306 .
  • Cardenas , E , Wu , W M , Leigh , M B , Carley , J , Carroll , S , Gentry , T , Luo , J , Watson , D , Gu , B , Ginder-Vogel , M , Kitanidis , P K , Jardine , P M , Zhou , J , Criddle , C S , Marsh , T L and Tiedje , J M . 2008 . Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels . Appl Environ Microbiol , 74 : 3718 – 3729 .
  • Chang , Y J , Long , P E , Geyer , R , Peacock , A D , Resch , C T , Sublette , K , Pfiffner , S , Smithgall , A , Anderson , R T , Vrionis , H A , Stephen , J R , Dayvault , R , Ortiz-Bernad , I , Lovley , D R and White , D C . 2005 . Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI) . Environ Sci Technol , 39 : 9039 – 9048 .
  • Cozzarelli , I M , Suflita , J M , Ulrich , G A , Harris , S H , Scholl , M A , Schlottmann , J L and Christenson , S . 2000 . Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate . Environ Sci Technol , 34 : 4025 – 4033 .
  • El Fantroussi , S , Ntibahezwa , E , Thomas , S , Naveau , H and Agathos , S N . 1998 . Effect of specific inhibitors on the anaerobic reductive dechlorination of 2,4,6-trichlorophenol by a stable methanogenic consortium . Anaerobe , 4 : 197 – 203 .
  • Elias , D A , Krumholz , L R , Wong , D , Long , P E and Suflita , J M . 2003a . Characterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings . Microb Ecol , 46 : 83 – 91 .
  • Elias , D A , Senko , J M and Krumholz , L R . 2003b . A procedure for quantitation of total oxidized uranium for bioremediation studies . J Microbiol Methods , 53 : 343 – 353 .
  • Francis , A J , Dodge , C J , Lu , F , Halada , G P and Clayton , C R . 1994 . XPS and XANES Studies of Uranium Reduction by Clostridium sp . Environ Sci Technol , 28 : 636 – 639 .
  • Fredrickson , J K , Kostandarithes , H M , Li , S W , Plymale , A E and Daly , M J . 2000a . Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1 . Appl Environ Microbiol , 66 : 2006 – 2011 .
  • Fredrickson , J K , Zachara , J M , Kennedy , D W , Duff , M C , Gorby , Y A , Li , S W and Krupka , K M . 2000b . Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium . Geochim Cosmochim Acta , 64 : 3085 – 3098 .
  • Gao , W and Francis , A J . 2008 . Reduction of uranium(VI) to uranium(IV) by clostridia . Appl Environ Microbiol , 74 : 4580 – 4584 .
  • Gu , B , Liang , L , Dickey , M J , Yin , X and Dai , S . 1998 . Reductive precipitation of uranium(VI) by zero-valent iron . Environ Sci Technol , 32 : 3366 – 3373 .
  • Gu , B , Yan , H , Zhou , P , Watson , D B , Park , M and Istok , J . 2005 . Natural humics impact uranium bioreduction and oxidation . Environ Sci Technol , 39 : 5268 – 5275 .
  • Guckert , J B , Antworth , C P , Nichols , P D and White , D C . 1985 . Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediment . FEMS Microbiol Ecol , 31 : 147 – 158 .
  • Hedrick , D B , Peacock , A D , Lovley , D R , Woodard , T L , Nevin , K P , Long , P E and White , D C . 2009 . Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor . J Ind Microbiol Biotechnol , 36 : 205 – 209 .
  • Henson , J M , McInerney , M J , Beaty , P S , Nickels , J and White , D C . 1988 . Phospholipid fatty acid composition of the syntrophic anaerobic bacterium Syntrophomonas wolfei . Appl Environ Microbiol , 54 : 1570 – 1574 .
  • Holmes , D E , Finneran , K T , O’Neil , R A and Lovley , D R . 2002 . Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments . Appl Environ Microbiol , 68 : 2300 – 2306 .
  • Hua , B and Deng , B . 2008 . Reductive immobilization of uranium(VI) by amorphous iron sulfide . Environ Sci Technol , 42 : 8703 – 8708 .
  • Hwang , C , Wu , W , Gentry , T J , Carley , J , Corbin , G A , Carroll , S L , Watson , D B , Jardine , P M , Zhou , J , Criddle , C S and Fields , M W . 2009 . Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths . ISME J , 3 : 47 – 64 .
  • Istok , J D , Senko , J M , Krumholz , L R , Watson , D , Bogle , M A , Peacock , A , Chang , Y J and White , D C . 2004 . In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer . Environ Sci Technol , 38 : 468 – 475 .
  • Khijniak , T V , Slobodkin , A I , Coker , V , Renshaw , J C , Livens , F R , Bonch-Osmolovskaya , E A , Birkeland , N K , Medvedeva-Lyalikova , N N and Lloyd , J R . 2005 . Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens . Appl Environ Microbiol , 71 : 6423 – 6426 .
  • Liu , C , Gorby , Y A , Zachara , J M , Fredrickson , J K and Brown , C F . 2002 . Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria . Biotechnol Bioeng , 80 : 637 – 649 .
  • Lovley , D R and Phillips , E J . 1986 . Organic matter mineralization with reduction of ferric iron in anaerobic sediments . Appl Environ Microbiol , 51 : 683 – 689 .
  • Lovley , D R and Phillips , E J . 1987 . Rapid assay for microbially reducible ferric iron in aquatic sediments . Appl Environ Microbiol , 53 : 1536 – 1540 .
  • Lovley , D R and Phillips , E J . 1992a . Reduction of uranium by Desulfovibrio desulfuricans . Appl Environ Microbiol , 58 : 850 – 856 .
  • Lovley , D R and Phillips , E JP . 1992b . Bioremediation of uranium contamination with enzymatic uranium reduction . Environ Sci Technol , 26 : 2228 – 2234 .
  • Lovley , D R , Phillips , E JP , Gorby , Y A and Landa , E R . 1991 . Microbial reduction of uranium . Nature , 350
  • Lovley , D R , Roden , E E , Phillips , E JP and Woodward , J C . 1993 . Enzymic iron and uranium reduction by sulfate-reducing bacteria . Mar Geology , 113 : 41 – 53 .
  • Luo , W , Wu , W M , Yan , T , Criddle , C S , Jardine , P M , Zhou , J and Gu , B . 2007 . Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition . Appl Microbiol Biotechnol , 77 : 713 – 721 .
  • Madden , A S , Palumbo , A V , Ravel , B , Vishnivetskaya , T A , Phelps , T J , Schadt , C W and Brandt , C C . 2009 . Donor-dependent extent of uranium reduction for bioremediation of contaminated sediment microcosms . J Environ Qual , 38 : 53 – 60 .
  • Mohanty , S R , Kollah , B , Hedrick , D B , Peacock , A D , Kukkadapu , R K and Roden , E E . 2008 . Biogeochemical processes in ethanol stimulated uranium-contaminated subsurface sediments . Environ Sci Technol , 42 : 4384 – 4390 .
  • Nevin , K P , Finneran , K T and Lovley , D R . 2003 . Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment . Appl Environ Microbiol , 69 : 3672 – 3675 .
  • North , N N , Dollhopf , S L , Petrie , L , Istok , J D , Balkwill , D L and Kostka , J E . 2004 . Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate . Appl Environ Microbiol , 70 : 4911 – 4920 .
  • Nyman , J L , Marsh , T L , Ginder-Vogel , M A , Gentile , M , Fendorf , S and Criddle , C . 2006 . Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms . Biodegradation , 17 : 303 – 316 .
  • Oremland , R S and Capone , D G . 1988 . Use of specific inhibitors in biogeochemistry and microbial ecology . Adv Microb Ecol , 10 : 285 – 383 .
  • Peacock , A D , Chang , Y J , Istok , J D , Krumholz , L , Geyer , R , Kinsall , B , Watson , D , Sublette , K L and White , D C . 2004 . Utilization of microbial biofilms as monitors of bioremediation . Microb Ecol , 47 : 284 – 292 .
  • Petrie , L , North , N N , Dollhopf , S L , Balkwill , D L and Kostka , J E . 2003 . Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI) . Appl Environ Microbiol , 69 : 7467 – 7479 .
  • Pinkart , H C , Ringelberg , D B , Piceno , Y M , MacNaughton , S J and White , D C . 2002 . “ Biochemical approaches to biomass measurements and community structure analysis ” . In Manual of Environmental Microbiology , Second Edition , Edited by: Hurst , C J , Crawford , R L , Knudsen , G R , McInerney , M J and Stetzenbach , L D . 101 – 113 . Washington, DC : ASM Press .
  • Senko , J M , Istok , J D , Suflita , J M and Krumholz , L R . 2002 . In-situ evidence for uranium immobilization and remobilization . Environ Sci Technol , 36 : 1491 – 1496 .
  • Senko , J M , Zhang , G , McDonough , J T , Bruns , M A and Burgos , W D . 2009 . Metal reduction at low pH by a Desulfosporosinus species: Implications for the biological treatment of acid mine drainage . Geomicrobiol J , 26 : 71 – 82 .
  • Shelobolina , E S , Sullivan , S A , O’Neill , K R , Nevin , K P and Lovley , D R . 2004 . Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov . Appl Environ Microbiol , 70 : 2959 – 2965 .
  • Shelobolina , E S , Vrionis , H A , Findlay , R H and Lovley , D R . 2008 . Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation . Int J Syst Evol Microbiol , 58 : 1075 – 1078 .
  • Spain , A M , Peacock , A D , Istok , J D , Elshahed , M S , Najar , F Z , Roe , B A , White , D C and Krumholz , L R . 2007 . Identification and isolation of a Castellaniella species important during biostimulation of an acidic nitrate- and uranium-contaminated aquifer . Appl Environ Microbiol , 73 : 4892 – 4904 .
  • Sung , Y , Fletcher , K E , Ritalahti , K M , Apkarian , R P , Ramos-Hernandez , N , Sanford , R A , Mesbah , N M and Loffler , F E . 2006 . Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium . Appl Environ Microbiol , 72 : 2775 – 2782 .
  • Suzuki , Y , Kelly , S D , Kemner , K M and Banfield , J F . 2003 . Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment . Appl Environ Microbiol , 69 : 1337 – 1346 .
  • Suzuki , Y , Kelly , S D , Kemner , K M and Banfield , J F . 2005 . Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment . Appl Environ Microbiol , 71 : 1790 – 1797 .
  • Thomas , S H , Padilla-Crespo , E , Jardine , P M , Sanford , R A and Loffler , F E . 2009 . Diversity and distribution of anaeromyxobacter strains in a uranium-contaminated subsurface environment with a nonuniform groundwater flow . Appl Environ Microbiol , 75 : 3679 – 3687 .
  • Vrionis , H A , Anderson , R T , Ortiz-Bernad , I , O’Neill , K R , Resch , C T , Peacock , A D , Dayvault , R , White , D C , Long , P E and Lovley , D R . 2005 . Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site . Appl Environ Microbiol , 71 : 6308 – 6318 .
  • Wall , J D and Krumholz , L R . 2006 . Uranium reduction . Annu Rev Microbiol , 60 : 149 – 166 .
  • Wan , J , Tokunaga , T K , Kim , Y , Brodie , E , Daly , R , Hazen , T C and Firestone , M K . 2008 . Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment . Environ Sci Technol , 42 : 7573 – 7579 .
  • White , D , Davis , W M , Nickels , J S , King , J D and Bobbie , R J . 1979 . Determination of the sedimentary microbial biomass by extractable lipid phosphate . Oecologia , 40 : 51 – 62 .
  • White , D C , Stair , J O and Ringelberg , D B . 1996 . Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis . J Ind Microbiol , 17 : 185 – 196 .
  • Wu , Q , Sanford , R A and Loffler , F E . 2006 . Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C . Appl Environ Microbiol , 72 : 3608 – 3614 .
  • Wu , W M , Carley , J , Luo , J , Ginder-Vogel , M A , Cardenas , E , Leigh , M B , Hwang , C , Kelly , S D , Ruan , C , Wu , L , Van Nostrand , J , Gentry , T , Lowe , K , Mehlhorn , T , Carroll , S , Luo , W , Fields , M W , Gu , B , Watson , D , Kemner , K M , Marsh , T , Tiedje , J , Zhou , J , Fendorf , S , Kitanidis , P K , Jardine , P M and Criddle , C S . 2007 . In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen . Environ Sci Technol , 41 : 5716 – 5723 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.