366
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Siderophore-Mediated Dissolution of Hematite (α-Fe2O3): Effects of Nanoparticle Size

, &
Pages 314-322 | Received 03 Dec 2010, Accepted 03 Dec 2010, Published online: 08 Feb 2012

REFERENCES

  • Albrecht-Gary , A-M and Crumbliss , A L . 1998 . Coordination chemistry of siderophores: thermodynamics and kinetics of Fe chelation and release . Metal Ions Biol Syst , 35 : 239 – 327 .
  • Bagg , A and Neilands , J B . 1987 . Molecular mechanism of regulation of siderophore-mediated iron assimilation . Microbiol Rev , 51 : 509 – 518 .
  • Banfield , J F and Zhang , H Z . 2001 . Nanoparticles in the environment . Rev Miner Geochem , 44 : 1 – 58 .
  • Barton , LE. 2010 . Size Dependent Structure and Reactivity of Nanohematite , Notre Dame , , IN, USA : M.S. Thesis, University of Notre Dame .
  • Berner , RA. 1980 . Early diagenesis: A theoretical approach. Princeton Series in Geochemistry , 241 Princeton , NJ : Princeton University Press .
  • Berner , R A and Holdren , G R . 1979 . Mechanisms of feldspar weathering II. Observations of feldspars from soils . Geochim Cosmochim Acta , 49 : 1173 – 1186 .
  • Bickel , H , Bosshardt , R , Gäumann , E , Reusser , P , Vischer , E , Voser , W , Wettstein , A and Zähner , H . 1960 . Über die isolierung und charakterisierung der Ferrioxamine A—F, neuer wuchsstoffe der sideramin-gruppe . Helvet Chimica Acta , 43 : 2118 – 2128 .
  • Blum , A E and Stillings , L L . 1995 . “ Feldspar dissolution kinetics ” . In Chemical Weathering Rates of Silicate Minerals. Reviews in Mineralogy , series ed. , Edited by: White , A F , Brantley , S L and Ribbe , P H . Vol. 31 , 291 – 351 . Washington , DC : Mineralogical Society of America .
  • Brantley , S L , Ruebush , S , Jang , J-H and Tien , M . 2006 . “ Analysis of (Bio) Geochemical Kinetics of Fe III oxides ” . In Methods for Study of Microbe-Mineral Interactions , Edited by: Maurice , P A and Warren , L A . Vol. 14 , 79 – 116 . Chantilly , VA : The Clay Mineral Society .
  • Brunauer , S , Emmett , P H and Teller , E . 1938 . Adsorption of gases in multimolecular layers . J Amer Chem Soc , 60 : 309 – 319 .
  • Cervini-Silva , J. 2008 . Adsorption of trihydroxamate and catecholate siderophores on α-iron (hydr)oxides and their dissolution at pH 3.0 to 6.0 . Soil Sci Soc Amer J , 72 : 1557 – 1562 .
  • Cheah , S-F , Kraemer , S M , Cervini-Silva , J and Sposito , G . 2003 . Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron . Chem Geol , 198 : 63 – 75 .
  • Chen , LX, , Liu , T , Thurnauer , M C , Csencsits , R and Rajh , T . 2002 . Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations . J Phys Chem B , 106 : 8539 – 8546 .
  • Cocozza , C , Tsao , C CG , Cheah , S-F , Kraemer , S M , Raymond , K N , Miano , T M and Sposito , G . 2002 . Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores . Geochim Cosmochim Acta , 66 : 431 – 438 .
  • Dehner , C A , Awaya , J D , Maurice , P A and DuBois , J L . 2010 . Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina . Appl Environ Microbiol , 76 : 2041 – 2048 .
  • Dehner , C A , Barton , L , Maurice , P A and Dubois , J L . 2011 . Size-dependent bioavailability of hematite (α-Fe2O3) nanoparticles to a common aerobic bacterium . Environ Sci Technol , in press
  • Duckworth , O W and Sposito , G . 2005 . Siderophore-Maganese(III) interactions. 1. Air oxidation of Manganese(II) promoted by desferrioxamine B . Environ Sci Technol , 39 : 6037 – 6044 .
  • Edwards , D C and Myneni , S CB . 2005 . Hard and soft X-ray absorption spectroscopic investigation of aqueous Fe(III)-hydroxamate siderophore complexes . J Phys Chem A , 109 : 10249 – 10256 .
  • Eggleston , C M , Stack , A G , Rosso , K M , Higgins , S R , Bice , A M , Boese , S W , Pribyl , R D and Nichols , J J . 2003 . The structure of alpha-Fe2O3 (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations . Geochim Cosmochim Acta , 67 : 985 – 1000 .
  • Finnegan , M P , Zhang , H and Banfield , J F . 2007 . Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy . J Phys Chem C , 111 : 1962 – 1968 .
  • He , Y T , Wan , J and Tokunaga , T . 2008 . Kinetic stability of hematite nanoparticles, the effect of particle sizes . J Nanopart Res , 10 : 321 – 332 .
  • Hersman , L , Huang , A , Maurice , P A and Forsythe , J H . 2000 . Siderophore production and iron reduction by Pseudomonas mendocina in response to iron deprivation . Geomicrobiol J , 17 : 261 – 273 .
  • Hersman , L , Lloyd , T and Sposito , G . 1995 . Siderophore-promoted dissolution of hematite . Geochim Cosmochim Acta , 59 : 3327 – 3330 .
  • Hochella , M F Jr. 1990 . “ Atomic structure, microtopography, composition, and reactivity of mineral surfaces ” . In Mineral-Water Interface Geochemistry. Vol. 23 Reviews in Mineralogy , Edited by: Hochella , M F Jr. and White , A F . 87 – 132 . Washington , DC : Mineralogical Society of America .
  • Hochella , M F , Lower , S K , Maurice , P A , Penn , R L , Sahai , N , Sparks , D L and Twining , B S . 2008 . Nanominerals, mineral nanoparticles and earth systems . Science , 319 : 1631 – 1635 .
  • Holmén , B A and Casey , W H . 1996 . Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH(s)] . Geochim Cosmochim Acta , 60 : 4403 – 4416 .
  • Junta-Rosso , J L and Hochella , M F . 1996 . The chemistry of hematite {001} surfaces . Geochim Cosmochim Acta , 60 : 305 – 314 .
  • Kalinowski , B E , Liermann , L J , Givens , S and Brantley , S L . 2000 . Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches . Chem Geol , 169 : 357 – 370 .
  • Kraemer , S. 2004 . Iron oxide dissolution and solubility in the presence of siderophores . Aquat Sci , 66 : 3 – 18 .
  • Kraemer , S M , Cheah , S-F , Zapf , R , Xu , J , Raymond , K N and Sposito , G . 1999 . Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite . Geochim Cosmochim Acta , 63 : 3003 – 3008 .
  • Madden , A S and Hochella , M F . 2005 . A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles . Geochim Cosmochim Acta , 69 : 389 – 398 .
  • Madden , A S , Hochella , M F and Luxton , T P . 2006 . Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption . Geochim Cosmochim Acta , 70 : 4095 – 4104 .
  • Manecki , M and Maurice , P A . 2008 . Siderophore promoted dissolution of pyromorphite . J Soil Sci , 173 : 821 – 830 .
  • Maurice , P A and Hochella , M F . 2008 . Nanoscale particles and processes: A new dimension in soil science . Advan Agron , 100 : 123 – 153 .
  • Maurice , P A , Hochella , M F , Parks , G A , Sposito , G and Schwertmann , U . 1995 . Evolution of hematite surface microtopography upon dissolution by simple organic-acids . Clays Clay Miner , 43 : 29 – 38 .
  • Miller , M J and Malouin , F . 1993 . Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates . Acc Chem Res , 26 : 241 – 249 .
  • Mishra , B , Haack , E A , Vasconcelos , I F , Maurice , P A and Bunker , B A . 2007 . XAFS determination of Pb and Cd speciation with siderophores and the metal/siderophore/kaolinite system . AIP Confer Proc , 882 : 196 – 198 .
  • Navrotsky , A , Mazeina , L and Majzlan , J . 2008 . Size-driven structural and thermodynamic complexity in iron oxides . Science , 319 : 1635 – 1638 .
  • Neilands , JB. 1981 . Microbial iron compounds . Ann Rev Biochem , 50 : 715 – 731 .
  • Neilands , J B and Nakamura , K . 1985 . Regulation of iron assimilation in microorganisms . Nutr Rev , 43 : 193 – 197 .
  • Powell , P E , Cline , G R , Reid , C PP and Szaniszlo , P J . 1980 . Occurrence of hydroxamate siderophore iron chelators in soils . Nature , 287 : 833 – 834 .
  • Raymond , K N and Dertz , E A . 2004 . “ Biochemical and physical properties of siderophores ” . In Iron Transport in Bacteria , Edited by: Cross , J H , Mey , A R and Payne , S M . 3 – 17 . Washington , DC : ASM Press .
  • Reichard , P U , Kretzschmar , R and Kraemer , S M . 2007 . Dissolution mechanisms of goethite in the presence of siderophores and organic acids . Geochim Cosmochim Acta , 71 : 5635 – 5650 .
  • Samson , S D and Eggleston , C M . 1998 . Active sites and the non-steady-state dissolution of hematite . Environ Sci Technol , 32 : 2871 – 2875 .
  • Schwertmann , U. 1991 . Solubility and dissolution of iron oxides . Plant Soil , 130 : 1 – 25 .
  • Stumm , W. 1992 . Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems , 428 New York : Wiley Interscience .
  • Suter , D , Banwart , S and Stumm , W . 1991 . Dissolution of hydrous Iron (III) oxides by reductive mechanisms . Langmuir , 7 : 809 – 813 .
  • Theng , B KG and Yuan , G . 2008 . Nanoparticles in the soil environment . Elements , 4 : 395 – 399 .
  • Waychunas , G A , Kim , C S and Banfield , J F . 2005 . Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms . J Nanopart Res , 7 : 409 – 433 .
  • Waychunas , G A , Zhang , H and Gilbert , B . 2009 . “ Structure, Chemistry, and Properties of Mineral Nanoparticles ” . Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory . Retrieved from: http://www.escholarship.org/uc/item/05j9m7q3
  • Wolff-Boenisch , D and Traina , S J . 2007 . The effect of desferrioxamine B on the desorption of U(VI) from Georgia kaolinite KGa-1b and its ligand-promoted dissolution at pH 6 and 25°C . Chem Geol , 242 : 278 – 287 .
  • Zinder , B , Furrer , G and Stumm , W . 1986 . The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides . Geochim Cosmochim Acta , 50 : 1861 – 1869 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.