1,850
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Sulphate-controlled Diversity of Subterranean Microbial Communities over Depth in Deep Groundwater with Opposing Gradients of Sulphate and Methane

, , &
Pages 617-631 | Received 01 Jul 2013, Accepted 01 Dec 2013, Published online: 17 Jul 2014

References

  • Aalto P, Helin J, Lindgren S, Pitkänen P, Ylä-Mella M, Ahokas H, Heikkinen E, Klockars J, Lahdenperä A-M, Korkealaakso J, et al. 2011. Baseline Report for Infiltration Experiment. Olkiluoto, Finland: Posiva Oy. Working Report nr WR 2011–25. 152 p.
  • Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. 2013. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 79:3906–3916.
  • Brysch K, Schneider C, Fuchs G, Widdel F. 1987. Lithoautotrophic growth of sulphate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274.
  • Ekendahl S, Pedersen K. 1994. Carbon transformations by attached bacterial populations in granitic groundwater from deep crystalline bed-rock of the Stripa research mine. Microbiology 140:1565–1573.
  • Eydal HSC, Pedersen K. 2007. Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3–1000 m. J Microbiol Methods 70:363–373.
  • Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Milleson M, Kieft TL, Trimarco E, Balkwill DL, et al. 2006. The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430.
  • Hallbeck L, Pedersen K. 2008. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl Geochem 23:1796–1819.
  • Hobbie JE, Daley RJ, Jasper S. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228.
  • Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 14:2317–2319.
  • Huse S, Huber J, Morrison H, Sogin M, Welch D. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143.
  • Jägevall S, Rabe L, Pedersen K. 2011. Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory, Sweden. Microb Ecol 61:410–422.
  • Kuever J, Könneke M, Galushko A, Drzyzga O. 2001. Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain Sax T as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51:171–177.
  • Kyle JE, Eydal HSC, Ferris FG, Pedersen K. 2008. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J 2:571–574.
  • Lane DJ. 1991. 16S/23S rDNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. Chichester, UK: John Wiley & Sons Ltd. p115–175.
  • Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt L, Lollar BS, Brodie EL, Hazen TC, Andersen GL, et al. 2006. Long-term sustainability of a high-energy low-diversity crustal biome. Science 314:479–482.
  • Marteinsson VT, Rúnarsson A, Stefánsson A, Thorsteinsson T, Jóhannesson T, Magnússon SH, Reynisson E, Einarsson B, Wade N, Morrison HG, et al. 2013. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J 7:427–437.
  • Motamedi M, Pedersen K. 1998. Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int J Syst Bacteriol 48:311–315.
  • Noble RT, Fuhrman JA. 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118.
  • Pedersen K. 1982. Method for studying microbial biofilms in flowing-water systems. Appl Environ Microbiol 43:6–13.
  • Pedersen K. 2005. The MICROBE framework: Site descriptions, instrumentation, and characterization, Äspö Hard Rock Laboratory. Stockholm: Swedish Nuclear Fuel and Waste Management Co. International Progress Report nr IPR-05-05. 85 p.
  • Pedersen K. 2012a. Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 81:217–229.
  • Pedersen K. 2012b. Influence of H2 and O2 on sulphate-reducing activity of a subterranean community and the coupled response in redox potential. FEMS Microbiol Ecol 82:653–665.
  • Pedersen K. 2013. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2. ISME J 7:839–849.
  • Pedersen K, Arlinger J, Ekendahl S, Hallbeck L. 1996. 16S rRNA gene diversity of attached and unattached groundwater bacteria along the access tunnel to the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 19:249–262.
  • Pedersen K, Arlinger J, Hallbeck A, Hallbeck L, Eriksson S, Johansson J. 2008. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4 to 450 m in Olkiluoto, Finland. ISME J 2:760–775.
  • Pedersen K, Ekendahl S. 1990. Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol 20:37–52.
  • Pedersen K, Ekendahl S. 1992a. Incorporation of CO2 and introduced organic compounds by bacterial populations in groundwater from the deep crystalline bedrock of the Stripa mine. J Gen Microbiol 138:369–376.
  • Pedersen K, Ekendahl S. 1992b. Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb Ecol 23:1–14.
  • Pedersen K, Hallbeck L, Arlinger J, Erlandson A-C, Jahromi N. 1997. Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. J Microbiol Meth 30:179–192.
  • Posiva Oy. 2009. Olkiluoto Site Description 2008, Posiva Report nr 2009-1. 725 p. Eurajoki, Finland: Posiva Oy.
  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196.
  • Ravot G, Magot M, Fardeau ML, Patel BK, Thomas P, Garcia JL, Ollivier B. 1999. Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 3:1141–1147.
  • Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA. 1993. Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097.
  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ. 2006. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120.
  • Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JF. 2001. Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760.
  • Toropainen V. 2009. Core drilling of drillholes ONK-PVA06 and ONK-PVA07 in ONKALO at Olkiluoto 2009. Working Report nr 2009-121. 61 p. Eurajoki, Finland: Posiva Oy.
  • Toropainen V. 2011. Core drilling of drillholes ONK-KR13, ONK-KR154 and ONK-KR15 in ONKALO at Olkiluoto 2010–2011. Working Report nr 2011-39. 127 p. Eurajoki, Finland: Posiva Oy.
  • Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, et al. 1989. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydroge-nophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogen-ophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘Pseudomonas carboxydoflava’), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333.
  • Zhang Y, Henriet J-P, Bursens J, Boon N. 2010. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour Technol 101:3132–3138.