469
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Diversity of Iron Oxidizing and Reducing Bacteria in Flow Reactors in the Äspö Hard Rock Laboratory

, , , , , , & show all
Pages 207-220 | Received 01 Sep 2013, Accepted 01 Jan 2014, Published online: 03 Apr 2015

References

  • Akaike H. 1974. A new look at the statistical model identification. Autom. Control. IEEE Trans 19:716–723.
  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925.
  • Anderson C, Pedersen K. 2003. In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1:169–178.
  • Artiss JD, Vinogradov S, Zak B. 1981. Spectrophotometric study of several sensitive reagents for serum iron. Clin. Biochem 14:311–5.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B. Stat. Methodol. 57:289–300.
  • Blöthe M, Roden EE. 2009a. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol 75:6937–6940.
  • Blöthe M, Roden EE. 2009b. Microbial iron redox cycling in a circumneutral-pH groundwater seep. Appl Environ Microbiol 75:468–473.
  • Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5:717–727.
  • Chennu A, FÄrber P, Volkenborn N, Al-Najjar MAA, Janssen F, de Beer D, et al. 2013. Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments. Limnol Oceanogr Meth 11:511–528.
  • Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE. 2011. Repeated anaerobic microbial redox cycling of iron. Appl. Environ. Microbiol. 77:6036–6042.
  • Cox TL, Sly LI. 1997. Phylogenetic relationships and uncertain taxonomy of pedomicro bium species. Int. J. Syst. Bacteriol 47:377–380.
  • Daims H, Brühl a, Amann R, Schleifer KH, Wagner M. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–44.
  • Davis SN, Whittemore DO, Fabryka-Martin J. 1998. Use of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350.
  • Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. 2008. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472.
  • Drake H, Tullborg E-L. 2009. Paleohydrogeological events recorded by stable isotopes, fluid inclusions and trace elements in fracture minerals in crystalline rock, Simpevarp area, SE Sweden. Appl Geochem 24:715–732.
  • Ehrenreich A, Widdel F. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526.
  • Ehrlich H. 1990. Geomicrobiology, 2nd ed. New York: Marcel Dekker Inc..
  • Emerson D, Fleming EJ, McBeth JM. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583.
  • Emerson D, Moyer C. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792.
  • Emerson D, Moyer C. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68:3085–3093.
  • Emerson D, Rentz J a, Lilburn TG, Davis RE, Aldrich H, Chan C, et al. 2007. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One 2:e667.
  • Emerson D, Revsbech NP. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Laboratory studies. Appl Environ Microbiol 60:4032–4038.
  • Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S. 2012. Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78:4386–99.
  • Flury M, Papritz A. 1993. Bromide in the natural environment: Occurrence and toxicity. J Environ Qual 22:747–758.
  • Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152.
  • Ghiorse W. 1984. Biology of iron-and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550.
  • Ghiorse W, Ehrlich H. 1992. Microbial biomineralization of iron and manganese. In: Skinner HCW, Fitzpatrick RW, editors, Biomineralization Processes, Cremlingen-Destedt, Germany: Catena Verlag, p75–99.
  • Gribble G. 2000. The natural production of organobromine compounds. Environ Sci Pollut Res 7:37–47.
  • Hallbeck L, Pedersen K. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol 136:1675–1680.
  • Hallbeck L, Ståhl F, Pedersen K. 1993. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 139:1531–1535.
  • Hanert H. 2006. The Genus Gallioenella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes Vol 7, New York: Springer-Verlag, p990–995.
  • Hansen HP. 1999. Determination of oxygen. In Grasshoff K, Kremling K, Ehrhardt M, editors. Methods of Seawater Analysis, Verlag Chemie, Weinheim, p75–89.
  • Haveman SA, Pedersen K. 2002. Distribution of culturable microorganisms in Fennoscandian Shield groundwater. FEMS Microbiol Ecol 39:129–137.
  • Hedrich S, Schlömann M, Johnson DB. 2011. The iron-oxidizing proteobacteria. Microbiology 157:1551–64.
  • Hirsch P, Hoffmann B. 1989. Dichotomicrobium thermohalophilum, gen. nov., spec, nov., BUDDINg Prosthecate bacteria from the Solar Lake (Sinai) and some related strains. Syst Appl Microbiol 39:495–497.
  • Hodges TW, Olson JB. 2009. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc. Appl Environ Microbiol 75:1650–1657.
  • Holmes DE, Nicoll JS, Bond DR, Lovley DR. 2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030.
  • Ionescu D, Siebert C, Polerecky L, Munwes YY, Lott C, Häusler S, et al. 2012. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS One 7:e38319.
  • Jiang J, Kappler A. 2008. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42:3563–9.
  • Konhauser, KO. 1998. Diversity of iron mineralization. Earth-Science Rev 43:91–121.
  • Kotelnikova S, Pedersen K. 1998. Distribution and activity of methanogens and homoacetogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 26:121–134.
  • Kumaraswamy R, Sjollema K, Kuenen G, van Loosdrecht M, Muyzer G. 2006. Nitrate-dependent [Fe(II)EDTA]2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Syst Appl Microbiol 29:276–286.
  • Laaksoharju M, Tullborg E, Wikberg P, Wallin B, Smellie J, Hard È. 1999. Hydrogeochemical conditions and evolution at the Äspö HRL, Sweden. Appl Geochem 14:835–839.
  • Lane D. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors, Nucleic Acid Techniques in Bacterial Systematics, New York: John Wiley and Sons, p115–175.
  • Lovley D. 2006. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes: Prokaryotic Physiology and Biochemistry, Vol. 2, New York: Springer p635–658.
  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al. 2004. ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371.
  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst Appl Microbiol 15:593–600.
  • McBeth JM, Fleming EJ, Emerson D. 2013. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. Environ Microbiol Rep 5:453–463.
  • McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D. 2011. Neutrophilic iron-oxidizing “zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77:1405–1412.
  • Moore RL. 1981. The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annu. Rev. Microbiol. 35:567–94.
  • Morgan B, Lahav O. 2007. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68:2080–2084.
  • Mortimer RJG, Galsworthy AMJ, Bottrell SH, Wilmot LE, Newton RJ. 2011. Experimental evidence for rapid biotic and abiotic reduction of Fe (III) at low temperatures in salt marsh sediments: a possible mechanism for formation of modern sedimentary siderite concretions. Sedimentology 58:1514–1529.
  • Neef A. 1997. Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. Doctoral thesis (Technische Universität München.
  • Oksanen J, Guillaume BF, Kindt R, Legendre P, Minchin P, O’Hara R, et al. 2006. Vegan: community ecology package. R package version 2.0-4. cran. r-project. org/i.
  • Pedersen K. 1997. Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414.
  • Pedersen K, Arlinger J, Ekendahl S, Hallbeck L. 1996. 16s rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö hard rock laboratory, Sweden. FEMS Microbiol Ecol 19:249–262.
  • Pernthaler A, Pernthaler J, Amann R. 2004. Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. In Kowalchuk GA, de Bruijn FJ, Head IM, Van der Zijpp AJ, van Elsas JD, Editors. Mol Microb Ecol manual, 2nd ed. Dordrecht, Netherlands: Kluwer Acad. Publ. 711–726.
  • Polerecky L, Bissett A, Al-Najjar M, Faerber P, Osmers H, Suci P, et al. 2009. Modular spectral imaging system for discrimination of pigments in cells and microbial communities. Appl Environ Microbiol 75:758–71.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–596.
  • Ramette A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160.
  • Rönnback P. 2005. Äspö Hard Rock Laboratory: an overview of the geology, hydrology and hydrochemistry. ESS Bull 3:32–47.
  • Santegoeds CM, Schramm a, de Beer D. 1998. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9:159–67.
  • Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, et al. 2011. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS One 6:e25386.
  • Söderbäck B. 2008. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemare-Simpevarp area. SKB Rapport R-08-19 Stockholm.
  • Stein LY, La Duc MT, Grundl TJ, Nealson KH. 2001. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18.
  • Straub KL, Benz M, Schink B, Widdel F. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460.
  • Straub KL, Rainey FA, Widdel F. (1999). Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Bacteriol 49:729–735.
  • Straub KL, Schonhuber W, Buchholz-Cleven B, Schink B. 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378.
  • Tanaka N, Dumay V, Liao Q, Lange AJ, Wever R. 2002. Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium. Eur J Biochem 269:2162–2167.
  • Thamdrup B, Finster K, Hansen JW, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108.
  • Tyler PA. 1970. Hyphomicrobia and the oxidation of manganesse in aquatic ecosystems. Anton Leeuwen 36:567–578.
  • Vandieken V, Mussmann M, Niemann H, Jørgensen BB. 2006. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139.
  • Van Pée KH, Lingens F. 1985. Purification of bromoperoxidase from Pseudomonas aureofaciens. J Bacteriol 161:1171–1175.
  • Van Veen WL, Mulder EG, Deinema MH. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356.
  • Wedepohl HK. 1995. The composition of the continental crust. Geochim. Cosmochim. Acta 59:1217–1232.
  • Westerhoff P, Chao P, Mash H. 2004. Reactivity of natural organic matter with aqueous chlorine and bromine. Water Res 38:1502–1513.
  • Zeder M, Ellrott A, Amann R. 2011. Automated sample area definition for high-throughput microscopy. Cytometry. A 79:306–310.
  • Zeder M, Pernthaler J. 2009. Multispot live-image autofocusing for high-throughput microscopy of fluorescently stained bacteria. Cytometry A 75:781–788.
  • Ziegler M, Jilbert T, de Lange GJ, Lourens LJ, Reichart G-J. 2008. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosyst 9, Q05009, doi:10.1029/2007GC001932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.