965
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions

, , , &
Pages 221-230 | Received 01 Nov 2013, Accepted 01 Jan 2014, Published online: 03 Apr 2015

References

  • Amirbahman A, Sigg L, Gunten U. 1997. Reductive dissolution of Fe(III) (hydr)oxides by cysteine: Kinetics and mechanism. J Coll Interf Sci 194(1):194–206.
  • Anderson C, Pedersen K. 2003. In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1(2):169–178.
  • Bekker A, Slack J, Planavsky N, Krapez B, Hofmann A, Konhauser KO, Rouxel O. 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508.
  • Burdige DJ. 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Science Rev 35(3):249–284.
  • Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5(4):717–727.
  • Chaudhuri SK, Lack JG, Coates JD. 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(II) biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microbiol 67(5): 2844–2848.
  • Chi Fru E, Ivarsson M, Kilias SP, Bengtson S, Belivanova V, Marone F, Fortin D, Broman C, Stampanoni M. 2013. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation. Nature Commun 4: 2050.
  • Childers SE, Ciufo S, Lovley DR. 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416(6882):767–769.
  • Clarke W, Konhauser K, Thomas JC, Bottrell SH. 1997. Ferric hydroxide and ferric hydroxysulfate precipitation by bacteria in an acid mine drainage lagoon. FEMS Microbiol Rev 20(3-4):351–361.
  • Cloud P. 1968. Atmospheric and hydrospheric evolution on the primitive earth. Science 160:729–736.
  • Cottrell E, Kelley KA. 2013. Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 34(6138): 1314–1317.
  • Czaja A, Johnson C, Beard B. 2013. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland). Earth Planet Sci Lett 363:192–203.
  • Drake H, Tullborg E-L. 2009. Paleohydrogeological events recorded by stable isotopes, fluid inclusions and trace elements in fracture minerals in crystalline rock, Simpevarp area, SE Sweden. Appl Geochem 24(4): 715–732.
  • Druschel GK, Emerson D, Sutka R, Suchecki P, Luther GW. 2008. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim Cosmochim Acta 72(14): 3358–3370.
  • Ehrenreich A, Widdel F. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60(12): 4517–4526.
  • Emerson D, Fleming EJ, McBeth JM. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Ann Rev Microbiol 64: 561–583.
  • Emerson D, Moyer C. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63(12): 4784–4792.
  • Emerson D, Revsbech NP. 1994. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies. Appl Environ Microbiol. 60(11): 4022–4031.
  • Fleming EJ, Langdon AE, Martinez-Garcia M, Stepanauskas R, Poulton NJ, Masland EDP, Emerson D. 2011, What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH. PloS One 6(3): e17769.
  • Fortin D, Langley S. 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Sci Rev 72(1–2): 1–19.
  • Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, Huber H, Stetter KO. 1996. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe 2+ at neutral pH under anoxic conditions. Arch Microbiol 166(5): 308–314.
  • Hallbeck L, Ståhl F, Pedersen K. 1993. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J General Microbiol 139(7): 1531–1535.
  • Hedrich S, Schlömann M, Johnson DB. 2011. The iron-oxidizing proteobacteria. Microbiology (Reading, England) 157(6):1551–1564.
  • Johnson CM, Beard BL, Klein C, Beukes NJ, Roden EE. 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72(1):151–169.
  • Jusys Z, Vaskelis A. 1992. Mechanism of copper(II) reduction by formaldehyde studied by on-line mass spectrometry. Langmuir 8(4):1230–1231.
  • Kappler A, Benz M, Schink B, Brune A. 2004. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47(1): 85–92.
  • Kasama T, Murakami T. 2001. The effect of microorganisms on Fe precipitation rates at neutral pH. Chem Geol 180(1–4): 117–128.
  • Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist 90(10):1473–1499.
  • Konhauser K, Hamade T, Raiswell R, Morris RC, Ferris G, Southam G, Canfield DE. 2002. Could bacteria have formed the Precambrian banded iron formations?. Geology 30(12):1079–1082.
  • Konhauser KO, Newman DK, Kappler A. 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–177.
  • Kumaraswamy R, Sjollema K, Kuenen G, van Loosdrecht M, Muyzer G. 2006. Nitrate-dependent [Fe(II)EDTA]2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Syst Appl Microbiol 29(4):276–286.
  • LaKind JS, Stone AT. 1989. Reductive dissolution of goethite by phenolic reductants. Geochim Cosmochim Acta 53(5): 961–971.
  • Lewy Z. 2009. Early precambrian banded iron formations: Biochemical precipitates from highly evaporated hydrothermal solutions of polar region lakes. Carbonates Evaporites 24(1):1–15.
  • Lovley DR. 1991. Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol Mol Biol Rev 55(2): 259–287.
  • Lovley DR. 2006. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes: Prokaryotic Physiology and Biochemistry, New York: Springer, p635–658.
  • Lovley D, Coates J, Blunt-Harris E. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445–448.
  • Lovley DR, Phillips EJP. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51(4):683–689.
  • Luther GW, Kostka JE, Church TM, Sulzberger B, Stumm W. 1992. Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar Chem 40(1–2): 81–103.
  • Martin S. 2005. Precipitation and dissolution of iron and manganese oxides. In Grassian VH, editor. Environmental Catalysis, Boca Raton, FL: CRC Press, p61–82.
  • Morgan B, Lahav O. 2007. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68(11):2080–2084.
  • Mortimer RJG, Galsworthy AMJ, Bottrell SH, Wilmot LE, Newton RJ. 2011. Experimental evidence for rapid biotic and abiotic reduction of Fe (III) at low temperatures in salt marsh sediments: a possible mechanism for formation of modern sedimentary siderite concretions. Sedimentology 58(6): 1514–1529.
  • Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. 2012. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36(2):486–511.
  • Neubauer, S., Emerson, D., and Megonigal, J.P., 2002, Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol 68:3988–3995.
  • Newman DK, Kolter R. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97.
  • Pédrot M, Le Boudec A, Davranche M, Dia A, Henin O. 2011. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? J Coll Interf Sci 359(1):75–85.
  • Pett-Ridge J, Weber P. 2012, NanoSIP: NanoSIMS applications for microbial biology, In: Navid, A. ed. Microbial Systems Biology, New York: Springer, p375–408.
  • Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. 2012. Look@NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol 14(4): 1009–1023.
  • Posth NR, Konhauser KO, Kappler A 2011. Banded Iron Formations. In Reitner J., Thiel V. (eds) Encyclopedia of Geobiology. 92-102. Springer, New York
  • Posth NR, Köhler I, Swanner ED, Schröder C, Wellmann E, Binder B, Konhauser KO, Neumann U, Berthold C, Nowak M, Kappler A. 2013. Simulating Precambrian banded iron formation diagenesis. Chem Geol 362:66–73.
  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005. Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101.
  • Rentz JA, Kraiya C, Luther GW, Emerson D. 2007. Control of ferrous iron oxidation within circumneutral microbial iron mats by cellular activity and autocatalysis. Environ Sci Technol 41(17):6084–6089.
  • Rentz JA, Turner IP, Ullman JL. 2009. Removal of phosphorus from solution using biogenic iron oxides. Water Res 43(7):2029–2035.
  • Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringer R. 2004. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331(2):370–375.
  • Rönnback P. 2005. Äspö Hard Rock Laboratory: an overview of the geology, hydrology and hydrochemistry. ESS Bull 3(1):32–47.
  • Saito M, Wada H. 1984. Effect of molecular hydrogen on the reduction process of submerged soil. Soil Sci Plant Nutr 30(2): 255–259.
  • Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, Chan CS, Comolli LR, Ferriera S, Johnson J, Heidelberg JF, Edwards KJ. 2011. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PloS one, v. 6, no. 9, p. e25386, doi: 10.1371/journal.pone.0025386.
  • Söderbäck B. 2008. Geological evolution, palaeoclimate and historical development of the Forsmark Laxemare-Simpevarp area. Stockholm: Swedish Nuclear Fuel and Waste Management Co., p225.
  • Sogaard EG, Mendewaldt R, Abraham-Peskir J V. 2000. Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology. Water Res 34(10): 2675–2682.
  • Stone AT. 1987a. Microbial metabolites and the reductive dissolution of manganese oxides: Oxalate and pyruvate. Geochim Cosmochim Acta 51(4): 919–925.
  • Stone AT. 1987b. Reductive dissolution of manganese(III/Iv) oxides by substituted phenols. Environ Sci Technol 21(10):979–988.
  • Stone AT. 1997. Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces. Rev Mineral Geochem 35:309–344.
  • Straub K, Benz M, Schink B. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34(3):181–186.
  • Suzuki T, Hashimoto H, Matsumoto N, Furutani M, Kunoh H, Takada J. 2011. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks. Appl Environ Microbiol 77( 9):2877–2881.
  • Thamdrup B, Finster K, Hansen JW, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59(1):101–108.
  • Turick CE, Tisa LS, Caccavo F. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68(5): 2436–2444.
  • Wang Y, Xu H, Merino E, Konishi H. 2009. Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nat Geosci 2(11):781–784.
  • Weber KA, Achenbach LA, Coates JD. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature reviews. Microbiology 4(10): 752–764.
  • Wu J, Luther GWI. 1995. Complexation of Fe (III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50:159–177.
  • Yao W, Millero FJ. 1996. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Mar Chem 52:1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.