146
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Potential for Aerobic Methane Oxidation in Carboniferous Coal Measures

, , , , &
Pages 737-747 | Received 01 Jul 2013, Accepted 01 Jan 2014, Published online: 12 Aug 2014

References

  • Beal EJ, House CH, Orphan VJ. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325:184–187.
  • Beckmann S, Krüger M, Engelen B, Gorbushina AA, Cypionka H. 2011. Role of bacteria, archaea and fungi involved in methane release in abandoned coal mines. Geomicrobiol J 28(4):347–358.
  • Bodelier PLE, Laanbroek HJ. 2004. Nitrogen as a regulatory factor in methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277.
  • Botor D. 2011. One-dimensional modeling of the thermal history of the Upper Carboniferous sediments in the southern-western part of the Upper Silesia Coal Basin. In: Kozušníková A, editor. Documenta Geonica. Vol 1(8). Ostrava: Academy of Sciences of the Czech Republic, Institute of Geonics, p9–14.
  • Botor D, Kotarba M, Kosakowski P. 2002. Petroleum generation in the Carboniferous strata of the Lublin Trough. Poland: An integrated geochemical and numerical modelling approach. Organ Geochem 33:461–476.
  • Carini S, Bano N, LeCleir G, Joy SB. 2005. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California. USA. Environ Microbiol 7(8):1127–1138.
  • Cicerone RJ, Oremland RS. 1988. Biogeochemical aspects of atmospheric methane. Global Biochem Cycl 2:299–327.
  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM. 2002. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Inter J System Evoolution Microbiol 52:251–261.
  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882.
  • Einola J, Sormunen K, Lensu A, Leiskallio A, Ettala M, Rintala J. 2009. Methane oxidation at a surface-sealed boreal landfill. Waste Mgmt 29:2105–2120.
  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJCT, Van Alen T, Luesken F, Wu ML, Van De Pas- Schoonen KT, Op Den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. 2010. Nitrite- driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548.
  • Flores RM. 1998. Coalbed methane: from hazard to resource. Inter J Coal Geol 35:3–26.
  • Gola MR, Karger M, Gazda L. 2011. Distribution of biomarkers and thermal maturity of the organic matter in tonsteine and bituminous coal from seam 385/2 in Bogdanka coal mine. Lublin Coal Basin. Geol Rev 12(59):777–784. In Polish.
  • Greenblatt CL, Davis A, Clement BG, Kitts CL, Cox T, Cano RJ. 1999. Diversity of microorganisms isolated from amber. Microb Ecol 38:58–68.
  • Hunt JM. 1996. Petroleum Geochemistry and Geology. New York: WH Freeman & Co.
  • Ivanov MV, Beliaev SS, Laurinavichus KS, Namsaraev BB. 1979. Microbiological oxidation of methane in the stratal waters of the Lower Volgian. Mikrobiologiia 48:129–132 In Russian.
  • Ivanov MV, Nesterov AI, Namsaraev BB, Gal’chenko VF, Nazarenko AV. 1978. Distribution and geochemical activity of methanotrophic bacteria in the waters of coal mines. Mikrobiologicheskiĭ Zhurnal 42: 420–427. In Russian.
  • Jin H, Schimmelmann A, Mastalerz M, Pope J, Moore TA. 2010. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality. Inter J Coal Geol 81:64–72.
  • Joulian C, Escoffier S, Le Mer J, Neue HU, Roger PA. 1997. Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties. Euro J Soil Biol 33:105–116.
  • Kanduč T, Pezdič J. 2005. Origin and distribution of coalbed gases from the Velenje Basin. Slovenia. Geochem J 39:397–409.
  • Karacan ÖC, Ruiz FA, Cotè M, Phipps S. 2011. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Inter J Coal Geol 86:121–156.
  • Kasprzak J, Kozek B. 2004. The new longwall mechanized complex with daily output of 20 000 tons in “Bogdanka” mine in Lublin Coal Basin in Poland, in Poland Mine Planning and Equipment Selection. In: Paszkowska G, Hardygora M, Sikora M, editors. Proceedings of the Thirteenth International Symposium on Mine Planning and Equipment Selection, February. Leiden, London, New York, Philadelphia, Singapore: Balkema Publishers. p 425–430.
  • Kędzior S, Kotarba MJ, Pękała Z. 2013. Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous. Upper Mississippian and Pennsylvanian strata in the south-eastern part of the Upper Silesian Coal Basin. Poland. Inter J Coal Geol 105:24–35.
  • Kim AG. 1973. The Composition of Coalbed Gas. Washington, DC: U.S. Dept. of Interior, Bureau of Mines.
  • Kotarba MJ. 2001. Composition and origin of coalbed gases in the Upper Silesian and Lublin Basins. Poland. Organ Geochem 32:163–180.
  • Kotarba MJ, Clayton IR. 2003. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. Inter J Coal Geol 55:73–94.
  • Kotarba MJ, Rice DD. 2001. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland. Appl Geochem 16(7–8):895–910.
  • Kotelnikova S. 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Sci Revi 58:367–395.
  • Krüger M., Beckmann S, Engelen B, Thielemann T, Cramer B, Schippers A, Cypionka H. 2008. Microbial methane formation from hard coal and timber in an abandoned coal mine. Geomicrobiol J 25:315–321.
  • Li D, Hendry P, Faiz M. 2008. A survey of the microbial populations in Australian CBM reservoirs. Inter J Coal Geol 76:14–24.
  • Lim KLH, Pancost RD, Hornibrook ER, Maxfield PJ, Evershed RP. 2012. Archaeol: an indicator of methanogenesis in water-saturated soils. Archaea, PMID 23226972.
  • Limpens J, Berendse F, Blodau C, Canadell J, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications—A synthesis. Biogeosciences 5:1475–1491.
  • Midgley DJ, Hendry P, Pinetown KL, Fuentes D, Gong S, Mitchell DL, Faiz M. 2010. Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia. Inter J Coal Geol 82(3–4):232–239.
  • Mills CT, Amano Y, Slater GF, Dias RF, Iwatsuki T, Mandernack KW. 2010. Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from. 14C values of in situ phospholipid fatty acids and carbon sources. Geochim Cosmochim Acta 74:3785–3805.
  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener, G Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM. 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546.
  • Mingram B, Brauer K. 2001. Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim Cosmochim Acta 65(2):273–287.
  • Paczyński B, Sadurski A, editors. 2007. Poland Regional Hydrogeology. Vol II. Mineral, thermal and coal mine waters. Warsaw: Polish Geologic Institute. In Polish.
  • Pedersen K. 2000. Microbial Processes in Radioactive Waste Disposal. Technical Report, TR-00-04, Stockholm: Swedish Nuclear Fuel and Waste Management Co.
  • Peters KE, Walters CC, Moldowan JM. 2005. The Biomarker Guide. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Vol 2. Cambridge, New York, Melbourne: Cambridge University Press.
  • Pluta I. 2005. Mine waters of the Upper Silesian Coal Basin- origin, pollutants and purification. Katowice: Central Mining Institute. In Polish.
  • Pokorny R, Ojejnikowa P, Balog M, Zifeak M, Holker U, Jansen M, Bend J, Hofer M, Holencin R, Hudecova D, Varecka I. 2005. Characterisation of organisms isolated from lignite excavated from the Zahorie coal mine. Southwester Slovakia. Research in Microbiology 156:932–943.
  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–879.
  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten JS, Sinnighe Damsté JS, Lamers LPM, Roelofs JGM, Op den Camp HJM, Strous M. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156.
  • Reay DS, Nedwell DB. 2004. Methane oxidation in temperate soils: effects of inorganic N. Soil Biology and Biochemistry 36:2059–2065.
  • Rice D. 1993. Composition and Origins of Coalbed Gas. In: Law BE, Rice DD, editors. Hydrocarbons from Coal, AAPG Studies in Geology Series 38. Tulsa, Oklahoma: American Association of Petroleum Geologists. P 159–183.
  • Rogoż M, Zarębski K. 1987. Forecasted Changes in Hydrogeologic Conditions at the Lublin Coal Basin. In IMWA Proceedings, Hydrogeology of Coal Basins. Kraków: AGH University of Science and Technology Press, P 567–574
  • Roslev P, King GM. 1995. Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Applied and Environmental Microbiology 61:1563–1570.
  • Rożkowski A, Wilk Z. 1987. Hydrogeology of the Lublin Coal Basin. Poland. In: IMWA Proceedings, Hydrogeology of Coal Basins. Krakow: AGH University of Science and Technology Press. P 383–401.
  • Schubert CJ, Coolen MJL, Neretin LN, Schippers A, Abbas B, Durisch-Kaiser E, Wehrli B, Hopmans EC, Damsté JS, Wakeham S, Kuypers MMM. 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology 8:1844–1856.
  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK and New York: Cambridge University Press.
  • Song Y, Liu S, Zhang Q, Tao M, Zhao M, Hong F. 2012. Coalbed methane genesis, occurrence and accumulation in China. Petroleum Science 9:269–280.
  • Środoń J. 1995. Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales. Stud Geol Polon 108:9–22.
  • Stępniewski W, Stępniewska Z, Bennicelli RP, Gliński J. 2005. Oxygenology in Outline. Lublin: Institute of Agrophysics of the Polish Academy of Sciences.
  • Stępniewska Z, Pytlak A. 2008. Methanotrophic activity of coalbed rocks from “Bogdanka” coal mine south-east Poland. Arch Environ Protect 34(3):183–191.
  • Stępniewsk Z, Pytlak A, Kuźniar A. 2013. Methanotrophic activity in carboniferous coalbed rocks. Inter J Coal Geol 106:1–10.
  • Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M. 2011. Biogeochemistry of Microbial Coal-Bed Methane. Ann Rev Earth Planet Sci 39:617–656.
  • Trotsenko YA, Khmelenina VN. 2002. Biology of extremophilic and extremotolerant methanotroph. Arch Microbiol 177:123–131.
  • Trotsenko YA, Khmelenina VN. 2005. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26.
  • USEPA. 1995. Reducing Methane Emissions from Coal Mines in Poland: A Handbook for Expanding Coalbed Methane Recovery and Utilization in the Upper Silesian Coal Basin. Air and Radiation 6202J, EPA /430-R 95-003, U.S. Environmental Protection Agency, http://www.epa.gov/cmop/docs/int002.pdf.
  • Vreeland RH, Rosenzweig WD, Powers DW. 2000. Isolation of a 250-million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900.
  • Yu KW, Faulkner SP, Patrick Jr. WH. 2006. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest. Chemosphere 62:905–914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.