260
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Infrared Spectroscopic Biosignatures from Hidden Cave, New Mexico: Possible Applications for Remote Life Detection

, , , &
Pages 929-941 | Received 01 Jun 2013, Accepted 01 Apr 2014, Published online: 10 Oct 2014

References

  • Amy PS, Haldeman DL. 1997. Microbiology of the Terrestrial Subsurface. Boca Raton, FL: CRC Lewis Publishers.
  • Arouri K, Greenwood PF, Walter MR. 1999. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Organic Geochemistry 30:1323–1337.
  • Arouri K, Greenwood PF, Walter MR. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organ Geochem 31:75–89.
  • Ascaso C, Wierzchos J. 2003. The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol J 20:439–450.
  • Asmerom Y, Polyak VJ, Burns SJ. 2010. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat Geosci 3:114–117.
  • Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL. 2006. Sulfate minerals and organic compounds on Mars. Geology 34:357–360.
  • Barbieri R, Stivaletta N, Marinangeli L, Ori GG. 2006. Microbial signatures in sabhka evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci 54:726–736.
  • Barton HA. 2006. Introduction to cave microbiology: A review for the non-specialist. J Cave Karst Stud 68:43–53.
  • Barton HA, Northup DE. 2007. Geomicrobiology in cave environments: Past, current and future perspectives. J Cave Karst Stud 69:163–178.
  • Barton HA, Spear JR, Pace NR. 2001. Microbial life in the underworld: Biogenicity in secondary mineral formations. Geomicrobiol J 18:359–368.
  • Baskar S, Lee N, Theophilus PK. 2009. Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: Some evidence on biogenic activities. Environ Geol 57:1169–1186.
  • Benedetti E, Bramanti E, Papineschi F, Rossi I, Benedetti E. 1997. Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Appl Spectrosc 51:792–797.
  • Benison KC, Jagniecki EA, Edwards TB, Mormile MR, Storrie-Lombardi MC. 2008. ‘‘Hairy blobs:’’ microbial suspects preserved in modern and ancient extremely acid lake evaporites. Astrobiology 8:807–821.
  • Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, the OMEGA team, Berthe M, et al. 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404.
  • Blackhurst RL, Genge MJ, Kearsley AT, Grady MM. 2005. Cryptoendolithic alteration of Antarctic sandstones: pioneers or opportunists? J Geophys Res 110:1–10.
  • Blackwell J. 1977. Infrared and Raman spectroscopy of cellulose. In: Arthur JC, editor. Cellulose Chemistry and Technology. Symposium Series No. 48. Washington, DC: American Chemistry Society, p206–218.
  • Blyth AJ, Baker A, Collins MJ, Penkman KEH, Gilmour MA, Moss JS, Genty D, Drysdale RN. 2008. Molecular organic matter in speleothems and its potential as an environmental proxy. Quater Sci Rev 27:905–921.
  • Boston PJ. 2000. Life below and life “out there”. Geotimes 45:14–17.
  • Boston PJ, Ivanov MV, McKay CP. 1992. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308.
  • Boston PJ, Kleina LG, Soroka DS, Lavoie KH, Northup DE, Spilde MN, Hose LD. 1999a. Cave microbes: microbial mats lining hydrogen sulphide springs. International Symposium of Subsurface Microbiology Abstract 4:36.
  • Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DA, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN and others. 2001. Cave biosignature suites: Microbes, minerals and Mars. Astrobiology 1:25–55.
  • Brasier MD, Green OR, Jephocoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV. 2002. Questioning the evidence for Earth's oldest fossils. Nature 416:76–81.
  • Brasier MD, Green O, Lindsay JF, Steele A. 2004. Earth's oldest (∼3.5 Ga) fossils and the ‘Early Eden Hypothesis’: questioning the evidence. Origins Life Evol Biosphere 34:257–269.
  • Buick R. 1990. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5:441–459.
  • Cacchio P, Contento R, Ercole C, Cappuccio G, Martinez MP, Lepidi A. 2004. Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L’Aquila-Italy). Geomicrobiol J 21:497–509.
  • Chafetz HS. 1986. Marine peloids: a product of bacterially induced precipitation of calcite. J Sediment Petrol 56:812–817.
  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC. 2008. Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278.
  • Cox G, James JM, Leggett KEA, Osborne RAL. 1989. Cyanobacterially deposited speleothems: subaerial stromatolites. Geomicrobiol J 7:245–252.
  • Cunningham KI, Northup DE, Pollastro RM, Wright WG, LaRock EJ. 1995. Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25:2–8.
  • Cushing GE, Titus TN, Wynne JJ, Christensen PR. 2007. THEMIS observes possible cave skylights on Mars. Geophys Res Lett 34:17.
  • Davis DG, Palmer MV, Palmer AN. 1990. Extraordinary subaqueous speleothems in Lechuguilla Cave, New Mexico. NSS Bull 52:70–86.
  • De Leeuw JW, Largeau C. 1993. A review of macro-molecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel MH, Macko SA, editors. Organic Geochemistry. New York: Plenum, p23–72.
  • Des Marais DJ, NuthIII JA, Allamandola LJ, Boss AP, Farmer JD, Hoehler TR, Jakosky BM, Meadows VS, Pohorille A, Runnegar B, Spormann AM. 2008. The NASA astrobiology roadmap. Astrobiology 8:715–730.
  • Douglas S. 2004. Microbial biosignatures in evaporite deposits: evidence from Death Valley, California. Planet Space Sci 52:223–227.
  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162.
  • Engel AS. 2007. Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206.
  • Fassett CI, Head JW. 2005. Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region. Geophys Res Lett 32:L14201.
  • Fassett CI, JW Head. 2008. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56.
  • Fernández-Remolar DC, Gómez F, Prieto-Ballesteros O, Schelble RT, Rodríguez N, Amils R. 2008. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system. Astrobiology 8:157–173.
  • Fliermans CB, Hazen TC. 1991. Proceedings of the First International Symposium on the Microbiology of the Deep Subsurface, January 15–19, 1990, Orlando, Florida. Aiken, SC: WSRC Information Services.
  • Foster IS, King PL, Hyde BS, Southam G. 2010. Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: Astrobiological implications for Mars. Planet Space Sci 58:599–615.
  • Friedmann EI. 1982. Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.
  • Gibson EK, McKay DS, Thomas-Keprta K, Westall F, Romanek CA. 1999. It's dead Jim. But was it ever alive? Ad Astra 11:31–33.
  • Gillan DC, De Ridder C. 2001. Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia): Biomineralization, bioaccumulation, and inference of paleoenvironments. Chem Geol 177:371–379.
  • Glamoclija M, Garrel L, Berthon J, López-García P. 2004. Biosignatures and bacterial diversity in hydrothermal deposits of Sofatara Crater, Italy. Geomicrobiol J 21:529–541.
  • Harris D, Horwath WR, and Van Kessel C. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Amer J 65:1853–1856.
  • Heber JR, Sevenson R, Boldman O. 1952. Infrared spectroscopy as a means for identification of bacteria. Science 116:111–112.
  • Helm D, Labischinski H, Schallehn G, Naumann D. 1991. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137:69–79.
  • Hode T, Cady SL, von Dalwigk I, Kristiansson P. 2008. Evidence of ancient microbial life in an impact structure and its implications for astrobiology. In: Seckbach J, Walsh M, editors. From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures. London: Springer, p249–274.
  • Hodges CA. Moore HJ. 1994. Atlas of Volcanic Landforms on Mars. Washington, DC: US Geological Survey Professional Paper 1534.
  • Igisu M, Nakashima S, Ueno Y, Awramik SM, Maruyama S. 2006. In situ infrared microspectroscopy ∼850 million-year-old prokaryotic fossils. Appl Spectrosc 60:1111–1120.
  • Igisu M, Ueno Y, Shimojima M, Nakashima S, Awramik SM, Ohta H, Maruyama S. 2009. Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambr Res 173:19–26.
  • Igisu M, Ueno Y, Shimojima M, Nakashima S, Awramik SM, Maruyama S. 2011. Micro-FTIR spectroscopic imaging of ∼1900 Ma stromatolitic chert. In: Tewari V, Seckbach J, editors. Stromatolites: Interactions of Microbes with Sediments. The Netherlands: Kluwer Academic Publishers, p445–461.
  • Izawa MRM, Banerjee NR, Flemming RL, Bridge NJ, Schultz C. 2010. Basaltic glass as a habitat for microbial life: implications for astrobiology and planetary exploration. Planet Space Sci 58:583–591.
  • James JM, Patsalides E, Cox G. 1994. Amino acid composition of stromatolitic stalagmites. Geomicrobiol J 12:183–194.
  • Jones B. 2001. Microbial activity in caves—a geological perspective. Geomicrobiol J 18:345–358.
  • Jones B. 2009. Cave pearls—The integrated product of abiogenic and biogenic processes. J Sediment Res 79:689–710.
  • Jones B. 2010. Microbes in caves: Agents of calcite corrosion and precipitation. In: Pedley HM, Rogerson M, editors. Tufas and Speleothems: Unraveling the Microbial and Physical Controls. London: Geological Society of London, p 7–30.
  • Jones, B. 2011. Stalactite growth mediated by biofilms: Example from Nano Cave, Cayman Brac. British West Indies: J Sediment Res 81:322–338.
  • Keszthelyi L, Jaeger WL, Milazzo MP, McEwen AS, HiRISE Team. 2007. High resolution imaging science experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars reconnaissance orbiter primary science phase. Seventh International Conference on Mars (2007) Abstract #3314, Pasadena, California.
  • Krimm S, Bandekar J. 1986. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advan Prot Chem 38:181–364.
  • Kudryavtsev AB, Schopf JW, Agresti DG, Wdowiak TJ. 2001. In situ laser-Raman imagery of Precambrian microscopic fossils. Proc Natl Acad Sci USA 98:823–826.
  • Léveillé RJ, Datta S. 2010. Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planet Space Sci 58:592–598.
  • Léveillé RJ, Fyfe WS, Longstaffe FJ. 2000. Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 169:339–355.
  • Levenberg KQ. 1944. A method for the solution of certain problems in least squares. Quart Appl Math 2:164–168.
  • Mancinelli RL, Fahlen TF, Landheim R, Klovstad MR. 2004. Brines and evaporites: analogs for martian life. Adv Space Res 33:1244–1246.
  • Marquardt DW. 1963. An algorithm for least-squares estimation of nonlinear parameters. J Soc Indust Appl Math 11:431–441.
  • Marshall CP, Javaux EJ, Knoll AH, Walter MR. 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambr Res 138:208–224.
  • McKay CP, Stoker CR. 1989. The early environment and its evolution on Mars: Implications for life. Rev Geophys 27:189–214.
  • Melim LA, Liescheidt RL, Northup DE, Spilde MN, Boston PJ, Queen JM. 2009. A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico. Astrobiology 9:907–917.
  • Melim LA, Northup DE, Spilde MN, Jones B, Boston PJ, Bixby RJ. 2008. Reticulated filaments in cave pool speleothems: Microbe or mineral? J Cave Karst Stud 70:135–141.
  • Melim LA, Shinglman KM, Boston PJ, Northup DE, Splide MN, Queen JM. 2001. Evidence of microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiol J 18:311–330.
  • Melim LA, Spilde MN. 2011. Rapid growth and recrystallization of cave pearls in an underground limestone mine. J Sediment Res 81:775–786.
  • Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen AS, Squyres SW. 2010. Identification of carbonate-rich outcrops on Mars by the Spirit Rover. Science 329:421–424.
  • Norris KP. 1959. Infra-red spectroscopy and its application to microbiology. J Hygiene 57:326–345.
  • Omelon CR. 2008. Endolithic microbial communities in polar desert habitats. Geomicrobiol J 25:404–414.
  • Osinski GR, Tornabene LL, Banerjee NR, Cockell CS, Flemming R, Izawa MRM, McCutcheon J, Parnell J, Preston LJ, Pickersgill AE, Pontefract A, Sapers HM, Southam G. 2013. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224:347–363.
  • Pacton M, Breitenbach SFM, Lechleitner FA, Vaks A, Rollion-Bard C, Gutareva OS, Osintcev AV, Vasconcelos C. 2013. The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia – paleoenvironmental implications. Biogeosciences 10:6115–6130.
  • Palmer AN, Palmer MV. 2000. Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico. J Cave Karst Stud 62:91–108.
  • Parenteau MN, Cady SL. 2010. Microbial biosignatures in iron-mineralized phototrophic mats at Chocolate Pots Hot Springs, Yellowstone National Park, United States. Palaios 25:97–11.
  • Pasteris JD, Wopenka B. 2002. Images of the Earth's earliest fossils? Nature 420:476–477.
  • Pasteris JD, Wopenka B. 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738.
  • Pella E, 1990a. Elemental organic analysis. Part 1. Historical developments. Amer Lab 22:116–115.
  • Pella E, 1990b. Elemental organic analysis. Part 2. State of the art. Amer Lab 22-26:33–35.
  • Pevsner A, Diem M. 2003. IR spectroscopic studies of major cellular components. III. Hydration of protein, nucleic acid and phospholipid films. Biopolymers (Biospectroscopy) 72:282–289.
  • Polyak VJ, Asmerom Y, Burns SJ, Lachniet MS. 2012. Climatic backdrop to the terminal Pleistocene extinction of North American mammals. Geology 40:1023–1026.
  • Preston LJ, Benedix GK, Genge MJ, Sephton MA. 2008. A mulitdiscipinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars. Icarus 198:331–350.
  • Preston LJ, Dartnell LR. 2014. Planetary habitability: lessons learned from terrestrial analogues. Inter J Astrobiol 13:81–98.
  • Preston LJ, Genge MJ. 2010. The Rhynie Chert, Scotland and the search for life on Mars. Astrobiology 10:549–560.
  • Preston LJ, Izawa MRM, Banerjee NR. 2011b. Infrared spectroscopic characterisation of organic matter associated with microbial bioalteration textures in basaltic glass. Astrobiology 11:585–599.
  • Preston LJ, Shuster J, Fernández-Remolar D, Banerjee NR, Osinski GR, Southam G. 2011a. The preservation and degradation of filamentous bacteria and biomolecules in iron oxide deposits from Rio Tinto, Spain. Geobiology 9:233–249.
  • Rhoads CA, Painter CA, Given PH. 1987. FTIR studies of the contributions of plant polymers to coal formation. Inter J Coal Geol 8:69–83.
  • Riding, R. 2000. Microbial carbonates: the geologic record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214.
  • Rousseau L, Pèpe C, De Lumley H. 1992. Mise en evidence d’une activité fossile dans les planchers stalagmitiques du Pléistocène moyen par les marqueurs biogéochimiques. Comptes Rendus de l’Acade´mie des Sciences, Paris 315:1819–1825.
  • Rousseau L, Laafar S, Pèpe C, De Lumley H. 1995. Sterols as biogeochemical markers: results from Ensemble E of the stalagmitic floor, Grotte Du Lazaret, Nice, France. Quatern Sci Rev 14:51–59.
  • Rousseau L, Beauchamp J, Falguères C, Emblanch C, Genty D, Bahain J-J, Blamart D. 2005. Apport des marqueurs isotopiques et biogéochimiques dans la reconstitution du paléoenvironnement de la grotte du Lazaret (Nice, Alpes-Maritimes) au cours du Pléistocène supérieur (stade isotopique 5). Comp Rend Geosci 337:1348–1354.
  • Sadooni FN, Howari F, Edwards HGM, El-Saiy A. 2010. Lithology, mineral assemblages and microbial fingerprints of the evaporite-carbonate sediments of the coastal sabkha of Abu Dhabi and their extraterrestrial implications. Inter J Astrobiol 9:147–156.
  • Schelble RT, Westall F, Allen CC. 2004. ∼1.8 Ga iron mineralized microbiota from the Gunflint Iron Formation, Ontario, Canada: implications for Mars. Advan Space Res 33:1268–1273.
  • Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5:333–371.
  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD. 2002. Laser-Raman imagery of Earth's earliest fossils. Nature 416:73–76.
  • Snider JR, Coin C, Miller MV, Boston PJ, Northup DE. 2009. Ultraviolet radiation sensitivity in cave bacteria: Evidence of adaptation to the subsurface? Inter J Speleol 38:11–22.
  • Summons RE, Walter MR. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Amer J Sci 290A:212–244.
  • Sumner DY. 2004. Poor preservation potential of organics in Meridiani Planum hematite-bearing sedimentary rocks. J Geophys Res 109:E12007.
  • Tamm LK, Tatulian SA. 1997. Infrared spectroscopy of proteins and peptides in lipid bilayers. Quart Rev Biophys 30:365–429.
  • Tegelaar EW, Largeau C, Derenne S, de Leeuw JW. 1989. A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103–3137.
  • Ueno Y, Isozaki Y, McNamara KJ. 2006. Coccoid-like microstructures in a 3.0 Ga chert from Western Australia. Inter Geol Rev 48:78–88.
  • Ueno Y, Isozaki Y, Yurimoto H, Maruyama S. 2001. Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. Inter Geol Rev 43:196–212.
  • Villar SEJ, Edwards HGM, Benning LG. 2006. Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158–169.
  • Warner N, Gupta S, Kim J-R, Lin S-Y, Muller J-P. 2010. Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars. Geology 38:71–74.
  • Westall F. 1999. The nature of fossil bacteria: a guide to the search for extraterrestrial life. Journal Geophysical Research 107:16437–16451.
  • Westall F, Brack A, Hofmann BA, Horneck G, Kurat G, Maxwell J, Ori GG, Pillinger C, Rauli F, Thomas N, and others. 2000. An ESA study for the search for life on Mars. Planet Space Sci 48:181–202.
  • Westall F, de Wit MJ, Dann J, van der Gaast S, de Ronde CEJ, Gerneke D. 2001. Early Archean fossil bacteria and biofilms in hydrothermally influenced sediments from the Barberton greenstone belt, South Africa. Precambr Res 106:93–116.
  • Wierzchos J, Sancho LG, Ascaso C. 2005. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formations and their detection. Environ Microbiol 7:566–575.
  • Wyrick D, Ferrill DA, Morris AP, Colton SL, Sims DW. 2004. Distribution, morphology, and origins of Martian pit crater chains. J Geophys Res: Planets 109:E06005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.