345
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and Characterization of Novel Iron-Oxidizing Autotrophic and Mixotrophic Bacteria from Boiling Springs Lake, an Oligotrophic, Acidic Geothermal Habitat

, , , , , & show all
Pages 140-157 | Received 01 Feb 2014, Accepted 01 Jun 2014, Published online: 10 Dec 2014

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402.
  • Atlas RM. 2004. Handbook of Microbiological Media. Boca Raton, FL: CRC Press.
  • Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Feng Y, Yao B. 2010a. Extremely acidic β-1,4-glucanase, CelA4, from thermoacidophilic Alicyclobacillus sp. A4 with high protease resistance and potential as a pig feed additive. J Agric Food Chem 58:1970–1975.
  • Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Luo C, Yao B. 2010b. A novel family 9 β-1,3(4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry. Appl Microbiol Biotech 87:251–259.
  • Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B. 2010c. A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotech 37:187–194.
  • Baker BJ, Banfield JF. 2003. Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152.
  • Balkwill DL, Ghiorse WC. 1985. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50:580–588.
  • Bogdanova TI, Tsaplina IA, Kondrat’eva TF, Duda VI, Suzina NE, Melamud VS, Tourova TP and Karavaiko, GI. 2006. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol 56:1039–1042.
  • Boyd, ES, Leavitt, WD, Geesey, GG. 2009. CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. Appl. Environ Microbiol 75:4289–4296.
  • Bridge TAM, Johnson DB. 1998. Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ Microbiol 64:2181–2186.
  • Brierley JA. 1978. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl. Environ Microbiol 36:523–525.
  • Clark DA, Norris PR. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov. : mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790.
  • Cleaver AA, Burton NP, Norris PR. 2007. A novel Acidimicrobium species in continuous cultures of moderately thermophilic, mineral-sulfide-oxidizing acidophiles. Appl Environ Microbiol 73:4294–4299.
  • Di Lauro B, Rossi M, Moracci M. 2006. Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10:301–310.
  • Druschel GK, Baker BJ, Gihring TM, Banfield JF. 2004. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13–32.
  • Ehrlich HL, Newman DK. 2009. Geomicrobiology. Boca Raton, FL, CRC Press.
  • Evangelou, VP. 1995. Pyrite Oxidation and its Control. New York: CRC Press.
  • Falagán C, Sánchez-España J, Johnson DB. 2014. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol Ecol 87:231–243.
  • Golovacheva RS, Karavaiko GI. 1978. Sulfobacillus, a new genus of thermophilic sporeforming bacteria. Mikrobiologiia [in Russian] 47:815–822.
  • Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amiles R. 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865.
  • Hansen MC, Toker-Neilson T, Givskov M, Molin S. 1998. Biased 16S rDNA PCR amplification caused by interference from DNA flanking template region. FEMS Microbiol Ecol 26:141–149.
  • Hedrich S, Johnson DB. 2013. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiol Lett 349:40–45.
  • Hudson CL. 2012. Determination of antibiotic resistance in the bacterial community of Boiling Springs Lake in Lassen Volcanic National Park. M. S. thesis, Humboldt State University, Arcata, California.
  • Johnson DB. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J Micro Methods 23:205–218.
  • Johnson DB. 2008. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Advan Microb Phys 54:201–255.
  • Johnson DB. 2012. Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81:2–12.
  • Johnson DB, Joulian C, d’Hugues P, Hallberg KB. 2008. Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles 12: 789–798.
  • Johnson DB, Kanao T, Hedrich S. 2012. Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96.
  • Johnson DB Okibe N, Roberto FF. 2003. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68.
  • Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM. 2005. Reclassification of Sulfobacillus thermosulfidooxidans subsp. thermotolerans strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int. J Syst Evol Microbiol 55: 941–947.
  • Lane DJ. 1991. 16S/23S rRNA sequencing. In Stackerbrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. Chichester, UK, Wiley, p115–175.
  • Lees H, Kwok SC, Suxuki I. 1969. The thermodynamics of iron oxidation by the ferrobacilli. Can J Microbiol 15:43–46.
  • Lovley DR, Phillips EJP. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540.
  • Macalady JL, Jones DS, Lyon EH. 2007. Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414.
  • Melamud VS, Pivovarova TA, Tourova TP, Kolganova TV, Osipov GA, Lysenko AM, Kondrat’eva TF, Karavaiko GI. 2003. Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium. Microbiology 72:605–612.
  • Morana A, Esposito A, Maurelli L, Ruggiero G, Ionata E, Rossi M, La Cara F. 2008. A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius. Prot Pep Lett 15:1017–1021.
  • Murr L. 2006. Biological issues in materials science and engineering: interdisciplinarity and the bio-materials paradigm. JOM 58:23–33.
  • Norris PR, Barr DW. 1985. Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28:221–224.
  • Norris PR, Clark DA, Owen JP, Waterhouse S. 1996. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783.
  • Okibe N, Gericke M, Hallberg KB, Johnson DB. 2003. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943.
  • Reynolds ES. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol 17: 208–212.
  • Reysenbach A-L, Pace NR. 1995. Reliable amplification of hyperthermophilic Archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb FT, Place AR, editors. Archaea- A Laboratory Manual (Thermophiles).Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, p101–106.
  • Rheims H, Spröer C, Rainey FA, Stackebrandt E. 1996. Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology 142:2863–2870.
  • Sand W, Gerke, T, Hallmann R, Schippers A. 1995. Sulfur chemistry, biofilm, and the (in) direct attack mechanism; a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966.
  • Santofimia E, Gonzalez-Toril E, Lopez-Pamo E, Gomariz M, Amils R, Aguiler, A. 2013. Microbial diversity and its relationship to physicochemical characteristics of the water in two extreme acidic pit lakes from the Iberian Pyrite Belt (SW Spain). PLoS One 8: e66746.
  • Shade A, Hogan CS, Klimowicz AK, Linske M, McManus PS, Handelsman J. 2012. Culturing captures members of the soil rare biosphere. Environ Microbiol 14:2247–2252.
  • Siering PL, Clarke JM, Wilson MS. 2006. Geochemical and biological diversity of acidic, hot springs in Lassen Volcanic National Park. Geomicrobiol J 23:129–141.
  • Siering PL, Wolfe GV, Wilson MS, Yip AN, Carey CM, Wardman CD, Shapiro RS, Stedman KM, Kyle JE, Yuan T, Van Nostrand JD, He Z, Zhou J. 2013. Microbial biogeochemistry of Boiling Springs Lake: a physically dynamic, oligotrophic, low pH geothermal ecosystem. Geobiology 11:356–376.
  • Silverman MP, Lundgren DG. 1959. Studies on the chemoautorophic iron bacterium Ferrobacillus ferrooxidans II. J Bacteriol 78:326–331.
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680.
  • Wang J, Bai Y, Shi P, Luo H, Huang H, Yin J, Yao B. 2011. A novel xylanase, XynA4-2, from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry. World J Microbiol Biotech 27:207–213.
  • Wilson MS, Siering PL, White CL, Hauser ME, Bartles AN. 2008. Novel Archaea and Bacteria dominate stable microbial communities in North America's largest hot spring Microb Ecol 56:292–305.
  • Wood AP, Kelly DP. 1983. Autotrophic and mixotrophic growth of three thermoacidophilic iron-oxidizing bacteria. FEMS Microbiol Lett 20:107–112.
  • Wolfe GW, Fitzhugh C, Almasary A, Green A, Bennett P, Wilson MS, Siering PL. 2014. Microbial heterotrophic production in an oligotrophic acidic geothermal lake: responses to organic amendments and terrestrial plant litter. FEMS Microb Ecol FEMSEC-14-03-0176.R1. In Press.
  • Yacob T, Pandey S, Silverstein, J, Rajaram H. 2013. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2. Environ Sci Technol 47:8658–8665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.