390
Views
8
CrossRef citations to date
0
Altmetric
Articles

A Microbial Arsenic Cycle in Sediments of an Acidic Mine Impoundment: Herman Pit, Clear Lake, California

, , , , , , & show all
Pages 677-689 | Received 01 Jun 2015, Accepted 08 Aug 2015, Published online: 12 Apr 2016

References

  • Baesman S, Miller LG, Wei JH, Cho Y, MatysED, Summons RE, Welander PV, Oremland, RS. 2015. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment. Microorganisms 2:290–309.
  • Benz M, Brune A, Schink B. 1998. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol 169:159–165.
  • Bertin PN, Hierich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S, Lauga B, et al. 2011. Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747.
  • Bond PL, Smriga SP, Banfield JF. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849.
  • Bromstad M, Jamieson HE. 2012. Giant Mine, Yellowknife, Canada: Arsenite waste as the legacy of gold mining and processing. In: Santini JM, Ward SA, editors. The Metabolism of Arsenite. Boca Raton, FL: CRC Press, p25–41.
  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personnè J-C. 2006. Diversity of microorganisms in Fe-As-rich acid mine drainage waters off Carnoulès, France. Appl Environ Microbiol 72:551–556.
  • Bruneel O, Personnè J-C, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Flèche A, Grimont PAD. 2003. Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95:492–499.
  • Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, et al. 2011. Characterization of the active bacterial community involved in natural attetuation processes in arsenic-rich creek sediments. Micro Ecol 61:793–810.
  • Burton ED, Johnston SG, Kocar BD. 2014. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environ Sci Technol 48:13660–13667.
  • Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD. 2013. Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195:3260–3268.
  • Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G. 2013. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Med 8:753–768.
  • Cheng H, Hu Y, Luo J, Zhao BX. 2009. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mat 165:13–26.
  • Dalton H, Whittenbury R. 1976. The acetylene reduction technique as an assay for the nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain Bath. Arch Microbiol 109:147–151.
  • Dawson RMC, Elliot DC, Elliot WH, Jones KM. 1986. Data for Biochemical Research, 3rd ed. London: Oxford Science.
  • Dhuldhaj UP, Yadav IC, Singh S, Sharma NK. 2013. Microbial interactions in the arsenic cycle: Adoptive strategies and applications in environmental management. Rev Environ Contam Toxicol 224:1–38.
  • Diez-Ercilla M, Sánchez-Espaňa, Yusta I, Wendt-Potthoff, Koschorreck M. 2014. Formation of biogenic sulfides in the water column of an acid pit lake: biogeochemical controls and effects of trace metal dynamics. Biogeochem 121:519–536.
  • Drewniak H, Sklodowska A. 2013. Arsenic-transforming microbes and their role in biomining processes. Env Sci Pollut Res 20:7728–7739.
  • Druschel GK, Baker BJ, Gihring TM, Banfield JF. 2004. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Transact 5:13–32.
  • Duquesne K, Lebrun S, Casiot C, Bruneel O, Personnè J-C, Leblanc M, Elbaz-Pouchilet F, Morin G, Bonnefoy V. 2003. Immobilization of arsenite and ferric iron by Acidithiobacillus ferroxidans and its relevance to acid mine drainage. Appl Environ Microbiol 69:6165–6173.
  • Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JF. 2000. Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383–397.
  • Engle MA, Goff F, Jewett DG, Reller GJ, Bauman JB. 2008. Applications of environmental groundwater tracers at the Sulfur Bank Mercury Mine, California, USA. Hydrogeol J 16:559–573.
  • Frankenberger WT Jr., editor. 2002. Environmental Chemistry of Arsenic. New York: Marcel Dekker.
  • Fuller CC, Davis JA, Waychunas GA. 1993. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta 57:2271–2282.
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.
  • Herbel MJ, Switzer Blum J, Oremland RS, Borglin SE. 2003. Reduction of elemental selenium to selenide: Experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602.
  • Héry M, Rizoulis A, Sanguin H, Cooke DA, Pancost RD, Polya DA, Lloyd JR. 2015. Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing. Environ Microbiol 17:1857–1869. doi:10.1111/1462-2920.12412.
  • Hoeft SE, Switzer Blum J, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS. 2007. Alkalilimnicola ehlichii, sp. nov., a novel, arsenite-oxidizing haloalkalipihilic γ-Proteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512.
  • Hoeft SE, Kulp TR, Stolz JF, Hollibaugh JT, Oremland RS. 2004. Dissimilatory arsenate reduction with sulfide as the electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70:2043–2049.
  • Kirk MF, Roden EE, Crossey LJ, Brearley AJ, Spilde MN. 2010. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim Cosmochim Acta 74:2538–2555.
  • Krüger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. 2013. Bacterial metabolism of environmental arsenic—Mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97:3827–3841.
  • Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS. 2007. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl Environ Microbiol 73:5130–5137.
  • Liu A, Garcia-Dominguez E, Rhine ED, Young LY. 2004. A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48:323–332.
  • Lloyd JR, Oremland RS. 2006. Microbial transformations of arsenic in the environment: From soda lakes to aquifers. Elements 2:85–90.
  • Majzlan J, Plášil J, Škoda R, Gescher J, Köler F, Rusznyak A, Küsel K, Neu TR, Mangold S, Rothe J. 2014. Arsenic-rich acid mine water with extreme arsenic concentration: Mineralogy, geochemistry, microbiology, and environmental implications. Environ Sci Technol 48:13685–13689.
  • Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK. 2004. arrA is a reliable marker for As(V) respiration. Science 306:455.
  • Moore JN, Walker JR, Hayes TH. 1990. Reactive scheme for the oxidation of As(III) to As(V) by birnessite. Clay Clay Min 38:549–555.
  • Morgante V, Mirete S, de Figueras CG, Cacho MP, González-Pastor JE. 2014. Exploring the diversity of arsenic resistance genes from acid mine drainage microorganisms. Environ Microbiol 17:1910–1925.
  • Nehring NL. 1981. Gases from springs and wells in the Geysers-Clear Lake Area. US Geol Surv Prof Pap 1141:205–209.
  • Nordstrom DK, Alpers CN. 1999. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96:3455–3462.
  • Nordstrom DK, Blowes DW, Ptacek CJ. 2015. Hydrogeochemistry and microbiology of mine drainage: An update. Appl Geochem 57: 3–16.
  • Nriagu JO, editor. 1994. Arsenic in the Environment. Part I: Cycling and Characterization. New York: Wiley Interscience.
  • O'Day PA, Vlassopoulos D, Root R, Rivera N. 2004. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc Natl Acad Sci USA 38:13703–13708.
  • Oremland RS, Capone DG, Stolz JF, Fuhrman J. 2005. Whither or wither geomicrobiology in the era of “community metagenomics.” Nature Rev Microbiol 3: 572–578.
  • Oremland RS, Hoeft SE, Bano N, Hollibaugh RA, Hollibaugh JT. 2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802.
  • Oremland RS, Stolz JF. 2003. The ecology of arsenic. Science 299:939–944.
  • Oremland RS, Stolz JF. 2005. Arsenic, microbes, and contaminated aquifers. Trends Microbiol 13:45–49.
  • Oremland RS, Stolz JF, Hollibaugh JT. 2004. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol Ecol 48:15–27.
  • Oremland RS, Wolfe-Simon F, Saltikov CW, Stolz JF. 2009. Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26:522–536.
  • Osborne TH, Jamieson HE, Hudson-Edwards KA, Nordstrom DK, Walker SR, Ward SA, Santini JM. 2010. Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidizer. BMC Microbiol 10:205.
  • Ranganathan M. 2005. Arr genes from arsenate-respiring low G+C Gram positive bacteria Bacillus selenitireducens strain MLS10 and Clostridium sp. strain OhILAs. Master's Thesis, Duquesne Univ, Pittsburgh, Pennsylvania, USA.
  • Rhine ED, Ní Chadhain SM, Zylstra GJ, Young LY. 2007. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochim Biophys Res Comm 354:662–667.
  • Rhine ED, Phelps CD, Young LY. 2006. Anaerobic arsenite oxidation by novel denitrifying isolates. Env Microbiol 8:899–908.
  • Saalfield SL, Bostick BC. 2010. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ Sci Technol 43:8787–8793.
  • Sánchez-Andrea I, Stams AJM, Hedrich S, Ňancuchero I, Johnson DB. 2015. Desulfosprosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles 19:39–47.
  • Santini JM, Ward SA, editors. 2012. The Metabolism of Arsenite. Arsenic in the Environment, volume 5. Boca Raton, FL: CRC Press.
  • Silver S, Phung LT. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608.
  • Silverman MP, Lundgren DG. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J Bact 77:642–647.
  • Slyemi D, Bonnefoy V. 2012. How prokaryotes deal with arsenic. Environ Microbiol Rpts 4:571–586.
  • Slyemi D, Moinier D, Brochier-Armanet C, Bonnefoy V, Johnson DB. 2011. Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3As(T) sp nov. Arch Microbiol 193:439–449.
  • Slyemi D, Moinier D, Talla E, Bonnefoy V. 2013. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans. Extremophiles 17:911–920.
  • Smedley PL, Kinniburgh DG. 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568.
  • Song B, Chyun E, Jaffe PR, Ward BB. 2009. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiol Ecol 68:108–117.
  • Staub KL, Benz M, Schink B, Widdel F. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460.
  • Stolz JF, Basu P, Santini JM, Oremland RS. 2006. Arsenic and selenium in microbial metabolism. Ann Rev Microbiol 60:107–130.
  • Stolz JF, Berekaa MM, Fischer E, Polshyna G, Thangavelu M, Dheer R, Ranganathan M, Garci Moyano A, El Assar S, Basu P. 2011. Methods for detection of arsenate respiring bacteria: Advances, cautions, and caveats. In: Stolz JF, Oremland RS, editors. Microbial Metabolism of Metals and Metalloids: Advances and Applications. Washington, DC: ASM Press, p283–296.
  • Suchanek TH, Richerson PJ, Zierenberg RA, Eagle-Smith CA, Slotton DG, Harner EJ, Osleger DA, Anderson DW, Cech JJ Jr, Schladow SG, Colwell AE, Mount JF, King PS, Adam DP, McElroy KJ. 2008. The legacy of mercury cycling from mining sources in an aquatic ecosystem: From ore to organism. Ecol Appl 18:12–28.
  • Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS. 1998. Bacillus arsenicoselenatis sp. nov., and Bacillus selenitireducens sp. nov. : two haloalkaliphiles from Mono Lake, California which respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30.
  • Tomczyk-Zak K, Kaczanowski, Drewniak Ł, Dmoch Ł, Sklodowska A, Zielenkiewicz U. 2013. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Sci Total Environ 461–462:330–340.
  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43.
  • Ueki A, Akasaka H, Suzuki D, Ueki K. 2006. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44.
  • van Lis R, Nitschke W, Duval S, Schoep-Cothenet B. 2013. Arsenics as bioenergetic substrates. Biochim Biophys Acta Bioenergetics 2:176–188.
  • Vaxevanidou K, Chrsitou C, Kremmydas GF, Georgakopolous DG, Papassiopi N. 2015. Role of indigenous arsenate and iron(III) respiring microorgaisms in controlling the mobilization of arsenic in a contaminated soil sample. Bull Environ Contam Toxicol 94:282–288.
  • Weber KA, Picardal FW, Roden EE. 2001. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environ Sci Technol 35:1644–1650.
  • Wells JT, Ghiorso MS. 1988. Rock alteration, mercury transport, and metal deposition at Sulfur Bank, California. Econ Geol 83:606–618.
  • Yamamura S, Amachi S. 2014. Microbiology of inorganic arsenic: From metabolism to bioremediation. J Biosci Bioeng 118:1–9.
  • Ying SC, Masue Y, Kocar BD, Giffis SD, Webb SM, Marcus MA. 2013. Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochim Cosmochim Acta 104:29–41.
  • Zargar K, Hoeft S, Oremland R, and Saltikov CW. 2010. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762.
  • Zhu Y-G, Yoshinaga M, Zhao F-J, Rosen BP. 2014. Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467.
  • Zobrist J, Dowdle PR, Davis JA, Oremland RS. 2000. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.