185
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Extracellular Membrane Structures: A Component of the Epilithic Biofilm on the Kupferschiefer Black Shale

, , , &
Pages 166-175 | Received 01 Dec 2015, Accepted 01 Mar 2016, Published online: 16 Sep 2016

References

  • Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ. 2012a. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78:6217–6224.
  • Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY, Heipieper HJ. 2012b. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93:837–845.
  • Beveridge TJ, Kadurugamuwa JL. 1996. Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins from Pseudomonas aeruginosa. Microb Drug Resist 2:1–8.
  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Hoiby N. 2000. Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13.
  • Cooley RB, Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. 2009. Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly “Pseudomonas butanovora.” Microbiol 155:2086–2096.
  • Ferris FG, Beveridge TJ. 1984. Binding of a paramagnetic metal cation to Escherichia coli K12 outer membrane vesicles. FEMS Microbiol Lett 24:43–46.
  • Ferris FG, Beveridge TJ. 1986. Physicochemical roles of soluble metal cations in the outer membrane of Escherichia coli K12. Can J Microbiol 32:594–601.
  • Glover RE, Smith RR, Jones MV, Jackson SK, Rowlands CC. 1999. An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol Lett 177:57–62.
  • Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. 2008. Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6:232–241.
  • Gould GW. 2006. History of science—spores. J Appl Microbiol 101:507–513.
  • Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, Lee YC, Seol SY, Cho DT, Kim S, Lee JC. 2011. Staphylococcus aureus produces membrane derived vesicles that induce host cell death. PLoS ONE 6:e27958.
  • Hartmans S, Smits JP, Van der Werf MJ, Volkering F, De Bont JAM. 1989. Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855.
  • Hua F, Wang HQ. 2014. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol Biotec Eq 28:165–175.
  • Kadurugamuwa JL, Beveridge TJ. 1995. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008.
  • Kadurugamuwa JL, Beveridge TJ. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774.
  • Knickerbocker C, Nordstromb DK, Southam G. 2000. The role of “blebbing” in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chem Geol 169:425–433.
  • Kulkarni HM, Swamy ChV, Jagannadham MV. 2014. Molecular characterization and functional analysis of outer membrane vesicles from the Antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions. J Proteome Res 13:1345–1358.
  • Kusel K, Dorsch T, Acker G, Stackebrandt E. 1997. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640.
  • Lee EY, Choi DS, Kim KP, Gho YS. 2008. Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27:535–555.
  • Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS. 2009. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9:5425–5436.
  • Lengke MF, Fleet ME, Southam G. 2006. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787.
  • Liu C, Zachara JM, Gorby YA, Szecsody JE, Brown CF. 2001. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32. Environ Sci Technol 35:1385–1393.
  • Manning AJ, Kuehn MJ. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:258.
  • Manning AJ, Kuehn MJ. 2013. Functional advantages conferred by extracellular prokaryotic membrane vesicles. J Mol Microbiol Biotechnol 23:131–141.
  • Matlakowska R, Narkiewicz W, Skłodowska A. 2010. Biotransformation of organic-rich copper-bearing black shale ore by indigenous microorganisms isolated from Lubin copper mine (Poland). Environ Sci Technol 44:2433–2440.
  • Matlakowska R, Skłodowska A. 2009. The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures. J Appl Microbiol 107:858–866.
  • Matlakowska R, Skłodowska A. 2011. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms. Chemosphere 83:1255–1261.
  • Matlakowska R, Skłodowska A, Nejbert K. 2012. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine. FEMS Microbiol Ecol 81:99–110.
  • Mayrand D, Grenier D. 1989. Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613.
  • Murrell JC, Smith TJ. 2010. Biochemistry and molecular biology of methane monooxygenase. In: KN. Timmis, editor. Handbook of Hydrocarbon and Lipid Microbiology. Berlin/Heidelberg: Springer. p1045–1055.
  • Oszczepalski S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Miner Deposita 34:599–613.
  • Pérez-Cruz C, Carrión O, Delgado L, Martinez G, López-Iglesias C, Mercade E. 2013. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol 79:1874–1881.
  • Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E. 2015. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS ONE 10:e0116896.
  • Renelli M, Matias V, Lo RY, Beveridge TJ. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiol 150:2161–2169.
  • Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. 2010. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci USA 107:19002–19007.
  • Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Sardessai Y, Bhosle S. 2002. Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268.
  • Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957.
  • Schooling SR, Hubley A, Beveridge TJ. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J Bacteriol 191:4097–4102.
  • Scorza FB, Doro F, Rodriques-Ortega MJ, Stella M, Liberatori S, Taddei AR, Serino L, Moriel DG, Nesta B, Fontana MR, Spagnuolo A, Pizza M, Norais N, Grandi G. 2008. Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatolR IHE3034 mutant. Mol Cell Proteomics 7:473–485.
  • Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos JL. 2012. Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23:415–421.
  • Shelobolina ES, Nevin KP, Blakeney-Hayward JD, Johnsen CV, Plaia TW, Krader P, Woodard T, Holmes DE, Vanpraagh CG, Lovley DR. 2007. Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Inter J Syst Evol Microbiol 57:126–135.
  • Skłodowska A, Matlakowska R, Bal K. 2005. Extracellular polymer produced in the presence of copper minerals during bioleaching. Geomicrobiol J 22:1–9.
  • Sokolov I, Smith DS, Henderson GS, Gorby YA, Ferris FG. 2001. Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens. Environ Sci Technol 35:341–347.
  • Thompson SS, Naidu YM, Pestka JJ. 1985. Ultrastructural localization of an extracellular protease in Pseudomonas fragi by using the peroxidase-antiperoxidase reaction. Appl Environ Microbiol 50:1038–1042.
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487.
  • Włodarczyk A, Szymańska A, Skłodowska A, Matlakowska R. 2016. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale. Chemosphere 148:416–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.