280
Views
18
CrossRef citations to date
0
Altmetric
Articles

The Role of Low-Molecular-Weight Organic Carbons in Facilitating the Mobilization and Biotransformation of As(V)/Fe(III) from a Realgar Tailing Mine Soil

ORCID Icon, , , & ORCID Icon
Pages 555-563 | Received 20 Nov 2017, Published online: 01 Mar 2018

References

  • Barberan A, Bates ST, Casamayor EO, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. Isme J. 6:343–51. doi:10.1038/ismej.2011.119.
  • Barton LL, Fauque GD. 2009. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol. 68:41–98. doi:10.1016/S0065-2164(09)01202-7.
  • Chaudhuri SK, Lovley DR. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol. 21:1229–32. doi:10.1038/nbt867.
  • Chen Z, Wang Y, Jiang X, Fu D, Xia D, Wang H, Dong G, Li Q. 2017a. Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. Sci Total Environ. 574:1684–94. doi:10.1016/j.scitotenv.2016.09.006.
  • Chen Z, Wang Y, Xia D, Jiang X, Fu D, Shen L, Wang H, Li QB. 2016. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. J Hazard Mater. 311:20–29. doi:10.1016/j.jhazmat.2016.02.069.
  • Chen Z, Zhang J, Han K, Yang C, Jiang X, Fu D, Li Q, Wang Y. 2017b. A novel AQDS–rGO composite to enhance the bioreduction of As (v)/Fe (iii) from the flooded arsenic-rich soil. Rsc Adv. 7:31075–84. doi:10.1039/C7RA05393B.
  • Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G. 2011. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. P Natl Acad Sci USA. 108:15248–52. doi:10.1073/pnas.1108616108.
  • Corsini A, Cavalca L, Crippa L, Zaccheo P, Andreoni V. 2010. Impact of glucose on microbial community of a soil containing pyrite cinders: Role of bacteria in arsenic mobilization under submerged condition. Soil Biol Biochem. 42:699–707. doi:10.1016/j.soilbio.2009.12.010.
  • Dong G, Huang Y, Yu Q, Wang Y, Wang H, He N, Li Q. 2014. Role of nanoparticles in controlling arsenic mobilization from sediments near a realgar tailing. Environ Sci Technol. 48:7469–76. doi:10.1021/es4055077.
  • Drewniak L, Maryan N, Lewandowski W, Kaczanowski S, Sklodowska A. 2012. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environ Pollut. 162:190–201. doi:10.1016/j.envpol.2011.11.023.
  • Eilers KG, Lauber CL, Knight R, Fierer N. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem. 42:896–903. doi:10.1016/j.soilbio.2010.02.003.
  • Fendorf S, Michael HA, van Geen A. 2010. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science. 328:1123–7. doi:10.1126/science.1172974.
  • Feris K, Ramsey P, Frazar C, Moore JN, Gannon JE, Holben WE. 2003. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl Environ Microbiol. 69:5563–73. doi:10.1128/AEM.69.9.5563-5573.2003.
  • Fischer H, Ingwersen J, Kuzyakov Y. 2010. Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. Eur J Soil Sci. 61:504–13. doi:10.1111/j.1365-2389.2010.01244.x.
  • Giloteaux L, Holmes DE, Williams KH, Wrighton KC, Wilkins MJ, Montgomery AP, Smith JA, Orellana R, Thompson CA, Roper TJ, et al. 2013. Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. Isme J. 7:370–83. doi:10.1038/ismej.2012.109.
  • Gorny J, Billon G, Lesven L, Dumoulin D, Made B, Noiriel C. 2015. Arsenic behavior in river sediments under redox gradient: A review. Sci Total Environ. 505C:423–34. doi:10.1016/j.scitotenv.2014.10.011.
  • Gunina A, Dippold MA, Glaser B, Kuzyakov Y. 2014. Fate of low molecular weight organic substances in an arable soil: From microbial uptake to utilisation and stabilisation. Soil Biol Biochem. 77:304–13. doi:10.1016/j.soilbio.2014.06.029.
  • Gunina A, Smith AR, Kuzyakov Y, Jones DL. 2017. Microbial uptake and utilization of low molecular weight organic substrates in soil depend on carbon oxidation state. Biogeochemistry. 133:89–100. doi:10.1007/s10533-017-0313-1.
  • Hartmann A, Schmid M, van Tuinen D, Berg G. 2009. Plant-driven selection of microbes. Plant Soil. 321:235–57. doi:10.1007/s11104-008-9814-y.
  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR. 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature. 430:68–71. doi:10.1038/nature02638.
  • Jong T, Parry DL. 2003. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res. 37:3379–89. doi:10.1016/S0043-1354(03)00165-9.
  • Kong X, Tian T, Xue S, Hartley W, Huang L, Wu C, Li C. 2017. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation. Land Degrad Dev. 29:58–67. doi:10.1002/ldr.2836.
  • Kourtev PS, Nakatsu CH, Konopka A. 2006. Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms. Appl Environ Microbiol. 72:628–37. doi:10.1128/AEM.72.1.628-637.2006.
  • Li Y, Lee CG, Watanabe T, Murase J, Asakawa S, Kimura M. 2011. Identification of microbial communities that assimilate substrate from root cap cells in an aerobic soil using a DNA-SIP approach. Soil Biol Biochem. 43:1928–35. doi:10.1016/j.soilbio.2011.05.016.
  • Liu XZ, Zhang LM, Prosser JI, He J. 2009. Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem. 41:687–94. doi:10.1016/j.soilbio.2009.01.001.
  • Liu Y, Li F-B, Xia W, Xu J-M, Yu X-S. 2013. Association between ferrous iron accumulation and pentachlorophenol degradation at the paddy soil–water interface in the presence of exogenous low-molecular-weight dissolved organic carbon. Chemosphere. 91:1547–55. doi:10.1016/j.chemosphere.2012.12.040.
  • Liu ZG, Wang YP, He N, Huang JL, Zhu K, Shao WY, Wang HT, Yuan WL, Li QB. 2011. Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis. J Hazard Mater. 185:8–16. doi:10.1016/j.jhazmat.2010.08.003.
  • Luo S, Guo W, Nealson KH, Feng X, He Z. 2016. 13C Pathway analysis for the role of formate in electricity generation by Shewanella Oneidensis MR-1 using lactate in microbial fuel cells. Sci Rep-Uk. 6:20941. doi:10.1038/srep20941.
  • Muller M, Alewell C, Hagedorn F. 2009. Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biol Biochem. 41:1066–74. doi:10.1016/j.soilbio.2009.02.007.
  • Mumford AC, Barringer JL, Benzel WM, Reilly PA, Young LY. 2012. Microbial transformations of arsenic: Mobilization from glauconitic sediments to water. Water Res. 46:2859–68.
  • Neal AL, Techkarnjanaruk S, Dohnalkova A, McCready D, Peyton BM, Geesey GG. 2001. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria1. Geochim Cosmochim Acta. 65:223–35.
  • Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF. 2001. Isolation and characterization of a novel As(V)-reducing bacterium: Implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microb. 67:5568–80.
  • Saalfield SL, Bostick BC. 2009. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in Ferrihydrite-Rich systems. Environ Sci Technol. 43:8787–93.
  • Saltikov CW, Wildman RA, Newman DK. 2005. Environ microbiol expression dynamics of arsenic respiration and detoxification in Shewanella sp. Strain ANA-3. J Bacteriol. 187:7390–96. doi:10.1128/jb.187.21.7390-7396.2005.
  • Shelobolina ES, Vanpraagh CG, Lovley DR. 2003. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J. 20:143–56.
  • Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol. 14:651–62.
  • Somenahally AC, Hollister EB, Yan WG, Gentry TJ, Loeppert RH. 2011. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ Sci Technol. 45:8328–35.
  • Song B, Chyun E, Jaffe PR, Ward BB. 2009. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiol Ecol. 68:108–17.
  • Sutton NB, van der Kraan GM, van Loosdrecht MCM, Muyzer G, Bruining J, Schotting RJ. 2009. Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh. Water Res. 43:1720–30.
  • Wang C, Deng H, Zhao F. 2016. The remediation of chromium (VI)-contaminated soils using microbial fuel cells. Soil Sediment Contam. 25:1–12.
  • Wang YP, Li QB, Shi JY, Lin Q, Chen XC, Wu W, Chen YX. 2008. Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol Biochem. 40:1167–77.
  • Wu C, Huang L, Xue SG, Pan WS, Zou Q, Hartley W, Wong MH. 2017. Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere. 168:969–75.
  • Wu C, Zou Q, Xue SG, Pan WS, Huang L, Hartley W, Mo JY, Wong MH. 2016. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ Pollut. 212:27–33.
  • Wu Y, Zhou X, Lei M, Yang J, Ma J, Qiao P, Chen T. 2017. Migration and transformation of arsenic: Contamination control and remediation in realgar mining areas. Appl Geochem. 77:44–51.
  • Xue SG, Shi LZ, Wu C, Wu H, Qin YY, Pan WS, Hartley W, Cui MQ. 2017. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ Res. 156:23–30.
  • Zhu F, Cheng Q, Xue S, Li C, Hartley W, Wu C, Tian T. 2017. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas. Land Degrad Dev. 29:138–49. doi:10.1002/ldr.2848.
  • Zhu F, Liao JX, Xue SG, Hartley W, Zou Q, Wu H. 2016. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography. Sci Total Environ. 573:155–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.