389
Views
7
CrossRef citations to date
0
Altmetric
Articles

Nitrous Oxide Dynamics in Agricultural Peat Soil in Response to Availability of Nitrate, Nitrite, and Iron Sulfides

, ORCID Icon, & ORCID Icon
Pages 76-85 | Received 28 Feb 2019, Accepted 04 Sep 2019, Published online: 24 Sep 2019

References

  • Bader C, Müller M, Schulin R, Leifeld J. 2018. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature. Biogeosciences 15(3):703–719.
  • Butler I, Schoonen MAA, Rickard DT. 1994. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta 41(2):211–215.
  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B 368:20130122.
  • Cooper GS, Smith RL. 1963. Sequence of products formed during denitrification in some diverse western soils. Soil Sci Soc Am J 27(6):659–662.
  • Dalsgaard T, Bak F. 1994. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microb 60:291–297.
  • Elsgaard L. 2010. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions. Chemosphere 79(10):1003–1009.
  • Elsgaard L, Jørgensen BB. 1992. Anoxic transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments. Geochim Cosmochim Acta 56(6):2425–2435.
  • Finster K. 2008. Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 29(3/4):281–292.
  • Haaijer SCM, Lamers LPM, Smolders AJP, Jetten MSM, Op den Camp H. 2007. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol J 24(5):391–401.
  • Hansen JW, Thamdrup B, Jørgensen BB. 2000. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Mar Ecol Prog Ser 208:273–282.
  • Hanson RS, Phillips JA. 1981. Chemical composition. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg N, Phillips GB, editors. Manual of Methods for General Bacteriology, Washington, DC: American Society for Microbiology, p. 328–364.
  • Hassan J, Qu Z, Bergaust LL, Bakken LR. 2016. Transient accumulation of NO2− and N2O during denitrification explained by assuming cell diversification by stochastic transcription of denitrification genes. PLOS Comput Biol 12(1):e1004621.
  • Heil J, Vereecken H, Brüggemann H. 2016. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur J Soil Sci 67(1):23–39.
  • Intergovernmental Panel on Climate Change (IPCC). 2014. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG, editors. Wetlands, Geneva: IPCC.
  • Jones LC, Peters B, Pacheco JSL, Casciotti KL, Fendorf S. 2015. Stable isotopes and iron mineral products as markers of chemodenitrification. Environ Sci Technol 49(6):3444–3452.
  • Jørgensen CJ, Elberling B, Jacobsen OS, Aamand J. 2009. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ Sci Technol 43(13):4851–4857.
  • Kandel TP, Lærke PE, Elsgaard L. 2018. Annual emissions of CO2, CH4 and N2O from a temperate peat bog: comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato. Agric Forest Meteorol 256/257:470–481.
  • Klüpfel L, Piepenbrock A, Kappler A, Sander M. 2014. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nature Geosci 7(3):195–200.
  • Kristensen MK. 1945. Vildmosearbejdet [The work performed in The Great Bog]. Copenhagen, Denmark: Det Danske Forlag, Danish.
  • Leppelt T, Dechow R, Gebbert S, Freibauer A, Lohila A, Augustin J, Drösler M, Fiedler S, Glatzel S, Höper H, et al. 2014. Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences 11(23):6595–6612.
  • Lim NYN, Frostegård Å, Bakken LR. 2018. Nitrite kinetics during anoxia: the role of abiotic versus microbial reduction. Soil Biol Biochem. 119:203–209.
  • Lipson DA, Jha M, Raab TK, Oechel WC. 2010. Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. J Geophys Res 115:G00I06.
  • Liu X, Millero FJ. 2002. The solubility of iron in seawater. Mar Chem 77(1):43–54.
  • Madsen HB, Jensen NH. 1988. Potentially acid sulfate soils in relation to landforms and geology. Catena 15:137–145.
  • Maljanen M, Sigurdsson BD, Gudmundsson J, Oskarsson H, Huttunen JT, Martikainen PJ. 2010. Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps. Biogeosciences 7(9):2711–2738.
  • Moses CO, Kirk Nordstrom D, Herman JS, Mills AL. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51(6):1561–1571.
  • Onley JR, Ahsan S, Sanford RA, Löffler FE. 2018. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol 84:e01985–17.
  • Ostrom NE, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Gandhi H, Von Fischer JC, Robertson GP. 2010. Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland. Soil Biol Biochem 42(3):499–506.
  • Pedersen EF. 1978. Tørvelagets sammensynkning og mineralisering i Store Vildmose [Compression and mineralisation of the peat layer in The Great Bog (Store Vildmose) N. Jutland, Denmark]. Tidsskr Planteavl 82:509–520.
  • Petersen SO, Hoffman C, Schäfer C-M, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SB, Greve MH. 2012. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences 9:403–422.
  • Regina K, Budiman A, Greve MH, Grønlund A, Kasimir Å, Lehtonen H, Petersen SO, Smith P, Wösten H. 2016. GHG mitigation of agricultural peatlands requires coherent policies. Climate Policy 4:522–541.
  • Sander R. 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15(8):4399–4981.
  • Stookey LL. 1970. Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42(7):779–781.
  • Taghizadeh-Toosi A, Elsgaard L, Clough T, Labouriau R, Ernstsen V, Petersen SO. 2019. Regulation of N2O emissions from acid organic soil drained for agriculture: effects of land use and season. Biogeosci Discuss. doi: 10.5194/bg-2019-14.
  • Taran O. 2017. Electron transfer between electrically conductive minerals and quinones. Front Chem 5:49.
  • Torrentó C, Cama J, Urmeneta J, Otero N, Soler A. 2010. Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem Geol 278(1/2):80–91.
  • Vaclavkova S, Jørgensen CJ, Jacobsen OS, Aamand J, Elberling B. 2014. The importance of microbial iron sulfide oxidation for nitrate depletion in anoxic Danish sediments. Aquat Geochem 20(4):419–435.
  • Vaclavkova S, Schultz-Jensen N, Jacobsen OS, Elberling B, Aamand J. 2015. Nitrate-controlled anaerobic oxidation of pyrite by Thiobacillus cultures. Geomicrobiol J 32(5):412–419.
  • Van Cleemput O, Baert L. 1983. Nitrite stability influenced by iron compounds. Soil Biol Biochem 15(2):137–140.
  • Venterea RT. 2007. Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Global Change Biol 13(8):1798–1809.
  • Wolfe RS. 1971. Microbial formation of methane. Adv Microb Physiol 6:107–146.
  • Yan R, Kappler A, Muehe EM, Knorr K-H, Horn M, Poser A, Lohmayer R, Peiffer S. 2019. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate. Geomicrobiol J 36(1):19–29.
  • Yoon S, Cruz-Garcia C, Sanford R, Ritalahti KM, Loffler FE. 2015. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3−/NO2− reduction pathways in Shewanella loihica strain PV-4. Isme J 9(5):1093–1104.
  • Zhu-Barker X, Cavazos AR, Ostrom NE, Horwath WR, Glass JB. 2015. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126(3):251–267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.