80
Views
5
CrossRef citations to date
0
Altmetric
Articles

Metal Contamination and Resistance of Superficial Sediment’s Prokaryotic Flora in Extreme Environments: Case of Sfax Solar Saltern (Tunisia)

, ORCID Icon, &
Pages 345-354 | Received 03 Apr 2019, Accepted 07 Dec 2019, Published online: 19 Dec 2019

References

  • Alves RIS, Sampaio CF, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI. 2014. Metal concentration in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155.
  • Antunes A, Simões MF, Grötzinger SW, Eppinger J, Bragança J, Bajic VB. 2017. Bioprospecting Archaea: Focus on Extreme Halophiles. In: Paterson, R, Lima, N, editors. Bioprospecting, Topics in Biodiversity and Conservation, Vol. 16, Switzerland: Springer International Publishing AG.
  • Azri C, Abida H, Medhioub K. 2010. Geochemical behaviour of the aerosol sampled in a suburban zone of Sfax City (Tunisia). IJEP 41(1/2):51–69.
  • Azri C, Maalej A, Medhioub K, Rosset R. 2007. Evolution of atmospheric pollutants in the city of Sfax (Tunisia) (October 1996–June 1997). Atmosfera 20:223–246.
  • Azri C, Maalej A, Tlili A, Medhioub K. 2002. Caractérisation du niveau de pollution atmosphérique dans la ville de Sfax (Tunisie): Influence des sources et des facteurs météorologiques. Techniques, Sciences, Méthodes (TSM). n 1, 97e année :78–92.
  • Azri C, Abida H, Medhioub K. 2009. Geochemical behaviour of the Tunisian background aerosols in sirocco wind circulations. Adv Atmos Sci 26(3):390–402.
  • Baati H, Amdouni R, Azri C, Gharsallah N, Ammar E. 2012. Brines modelling progress: a management tool for Tunisian multipond solar salterns, based on physical, chemical and microbial parameters. Geomicrobiol J 29(2):139–150.
  • Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E. 2008. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12(4):505–517.
  • Bahloul M. 2016. Comportement géochimique des métaux lourds dans les marais salants de la ville de Sfax et impact des sources d’apport [geochemical behavior of heavy metals in the Sfax solar saltern and impact of sources]. Ph.D. thesis, University of Sfax (French).
  • Bahloul M, Baati H, Amdouni R, Azri C. 2018. Assessment of heavy metals contamination and their potential toxicity in the surface sediments of Sfax Solar Saltern, Tunisia. Environ Earth Sci 77(1):1–27.
  • Bahloul M, Chabbi I, Dammak R, Amdouni R, Medhioub K, Azri C. 2015a. Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, southern Tunisia. Environ Monit Assess 177:1–17.
  • Bahloul M, Chabbi I, Sdiri A, Amdouni R, Medhioub K, Azri C. 2015b. Spatiotemporal variation of particulate fallout instances in Sfax City, Southern Tunisia: influence of sources and meteorology. Adv Meteorol 471396:11.
  • Baross JA, Lenovich LM. 1992. Halophilic and osmophilic microorganisms. In: Vanderzant, C and Splittstoesser, D, editors. Compendium of Methods for the Microbiological Examination of Foods. Washington, DC: American Public Health Association. p199–212.
  • Bastami KD, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Bastami MD. 2012. Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar Pollut Bull 64(12):2877–2884.
  • Bhuyana MS, Bakarb MA, Akhtara A, Hossainc MB, Alid MM, Islama MS. 2017. Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environ Nanotechnol Monit Manage 8:273–279.
  • Bonete MJ, Bautista V, Esclapez J, Bonete MJG, Pire C, Camacho M, Crespo JT, Martínez-Espinosa RM. 2015. New Uses of Haloarchaeal Species in Bioremediation Processes. Advances in Bioremediation of Wastewater and Polluted Soil. IntechOpen. London, UK.
  • Boujelben I, Martinez- Garcia M, Pelt JV, Maalej S. 2014. Diversity of cultivable halophilic Archaea and Bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie Leeuwenhoek 106(4):675–692.
  • Dammak R, Bahloul M, Chabbi I, Azri C. 2016. Spatial and temporal variations of dust particle deposition at three urban/suburban areas in Sfax city (Tunisia). Environ Monit Assess. 188(6):336.
  • DasSarma S, Fleischmann EM, Rodriguez-Valera F. 1995. Appendix 2. Media for halophiles. In: Robb, FT, editor. Archaea: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
  • Davis JC. 1986. Statistics and Data Analysis in Geology. New York: Wiley.
  • EPA 1996. U.S Environmental Protection Agency (EPA). Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices. Available at: www.epa.gov/epaoswer/hazwaste/test/3052.pdf
  • Grant WD, Larsen H. 1989. Extremely halophilic archaeobacteria. Order Halobacteriales ord. nov. Pages 2216–2233. In: Staley, JT, Bryant, MP, Pfennig, N, Holt, JG, editors. Bergey’s Manual of Systematic Bacteriology. Vol. 3. Baltimore, MD: Williams and Wilkins.
  • Haba RR, Sanchez-Porro C, Marquez MC, Ventosa V. 2011. Taxonomy of halophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K, editors. Extremophiles Handbook. Heidelberg: Springer, p255–308.
  • Hamidi M, Hejazi MS, Nazemyieh H, Hejazi MA, Naziri D. 2017. Halorubrum sp. TBZ112, an extremely halophilic carotenoid producing archaeon isolated from Urmia Lake. Pharm Sci 23(2):150–158.
  • Jain CK, Malik DS, Yadav R. 2007. Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India. Environ Monit Assess 130(1–3):129–139.
  • Japan International Cooperation Agency (JICA). 1993. The Study on Waste Water Treatment and Recycling of Selected Industries in the Region of Sfax in the Republic of Tunisia. Tunisia. JICA LIBRARY 1115588 [4].
  • Jarup L. 2003. Hazards of heavy metal contamination. Brit Med Bull 68:176–172.
  • Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B. 2015. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48:616–626.
  • Mani K, Salgaonkar BB, Braganca JM. 2012. Culturable halophilic Archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8(1):15–22.
  • Medici L, Bellanova J, Belviso C, Cavalcante F, Lettino A, Ragone PP, Fiore S. 2011. Trace metals speciation in sediments of the Basento River (Italy). Appl Clay Sci 53(3):414–442.
  • Naik MM, Bagayat A, Chrya L. 2017. Extreme halophilic Archaea Halobacterium sp.SP1 in bioremediation of hypersaline water polluted with metal, metalloid organometal and aromatic compound. Indian J Appl Microbiol 20:42–54.
  • Pereira F, Kerkar S, Krishnan KP. 2013. Bacterial response to dynamic metal concentrations in the surface sediments of a solar saltern (Goa, India). Environ Monit Assess 175:3625–3636.
  • Poole RK, Gadd GM. 1989. Metals: Microbe Interactions. Oxford: IRL Press.
  • Rath P, Panda UC, Bhatta D, Sahu KC. 2009. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments-a case study: Brahmani and Nandira Rivers, India. J Hazard Mater 163(2–3):632–644.
  • Rhoades JD. 1996. Salinity: Electrical conductivity and total dissolved solids. 2nd ed. In: Bartels, JM, Bigham, J, editors. Methods of Soil Analysis. Part III. Chemical Methods. Vol. 5. Madison, WI: ASA SSSA Publisher Agronomy, p417–436.
  • Ríos M, Nieto JJ, Ventosa A. 1998. Numerical taxonomy of heavy metal-tolerant nonhalophilic bacteria isolated from hypersaline environments. Int J Microbiol. 1:45–51.
  • Roane TM, Kellogg ST. 1996. Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42(6):593–603.
  • Rodriguez-Valera F. 1988. Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera, F, editor. Halophilic Bacteria. Boca Raton: CRC Press, p3–30.
  • Rossana CS, Ricardo AD, Domingos JF, Tania MB. 2016. Carotenoid production by halophilic Archaea under different culture conditions. Curr Microbiol 72:641–651.
  • Ruilian Y, Xing Y, Yuanhui Z, Gongren H, Xianglin T. 2008. Heavy metal pollution in intertidal sediments from Quanzhou Bay, China. J Environ Sci (China)) 20(6):664–669.
  • Santhanakrishnan T, Lakshmanan C, Radhakrishnan V. 2016. Heavy metal distribution in the salt Pans of Tuticorin, Tamil Nadu, India. J Appl Geochem 17(3):251–257.
  • Siddiqui MS, Thodey K, Trenchard I, Smolke DC. 2012. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12(2):144–170.
  • Simeonov V, Massart DL, Andreev G, Tsakovski S. 2000. Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’ sediments from the Black Sea. Chemosphere 41(9):1411–1417.
  • Squillaci G, Parrella R, Carbone V, Minasi P, La Cara F, Morana A. 2017. Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identifcation and antioxidant activity. Extremophiles 21(5):933–945.
  • STATIT-CF 1987. Services des études statistiques de l’Institut Technique des Céréales et Fourrages (I.T.C.F.) [Statistical studies service of the technical institute of cereals and fodders]: Boigneville. (French), ITCF.
  • Szefer P, Szefer K, Glasby GP, Pempkowiak J, Kaliszan R. 1996. Heavy metal pollution in superficial sediments from the southern Baltic Sea of Poland. J Environ Sci Health 31A:2723–2754.
  • Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Safari O. 2014. A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environ Sci Pollut Res. 21(2):813–833.
  • Tindall BJ. 1992. The family Halobacteriaceae. In: Balows, A, Trüper, H, Dworkin, M, Harder, W, Schleifer, KH, editors. The Prokaryotes. New York: Springer, p768–808.
  • Trigui H, Masmoudi S, Brochier-Armanet C, Barani A, Grégori G, Denis M, Dukan S, Maalej S. 2011. Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles 15(3):347–358.
  • Uluturhan E. 2010. Heavy metal concentrations in surface sediments from two regions (Saros and Gökova Gulfs) of the Eastern Aegean Sea. Environ Monit Assess 165(1–4):675–684.
  • Venkatramanan S, Chung SY, Ramkumar T, Selvam S. 2018. Ecological risk assessment of selected heavy metals in the surface sediments of three estuaries in the southeastern coast of India. Environ Earth Sci 77(4):116–129.
  • Ventosa A. 2006. Unusual Microorganisms from Unusual Habitats: Hypersaline Environments. London: Cambridge University Press.
  • Wang Y, Hu J, Xiong K, Huang X, Duan S. 2012. Distribution of heavy metals in core sediments from Baihua Lake. Proc Environ Sci 16:51–58.
  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen YXu. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safat 67(1):75–81.
  • Zampieri BDB, Bartelochi PA, Schultz L, Oliveira MA, Oliveira F. 2016. Diversity and distribution of heavy metal-resistant Bacteria in polluted sediments of the Araça Bay, São Sebastião (SP), and the relationship between heavy metals and organic matter. Microb Ecol 72(3):582–594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.