182
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effective Solubilization of Rock Phosphate by a Phosphate-Tolerant Bacterium Serratia sp.

, , ORCID Icon, , & ORCID Icon
Pages 561-569 | Received 19 Jul 2020, Accepted 09 Mar 2021, Published online: 30 Mar 2021

References

  • Arcand MM, Schneider KD. 2006. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of RP: a review. An Acad Bras Ciênc 78(4):791–807.
  • Axinte O, Badescu IS, Stroe C, Neacsu V, Bulgariu L, Bulgariu D. 2015. Evolution of trophic parameters from Amara lake. Environ Eng Manag J 14(3):559–565.
  • Calle-Castañeda SM, Márquez-Godoy MA, Hernández-Ortiz JP. 2018. Phosphorus recovery from high concentrations of low-grade phosphate rocks using the biogenic acid produced by the acidophilic bacteria Acidithiobacillus thiooxidans. Miner Eng 115:97–105.
  • Campos MD, Antonangelo JA, Alleoni LRF. 2016. Phosphorus sorption index in humid tropical soils. Soil Tillage Res 156:110–118.
  • Chakdar H, Dastager SG, Khire JM, Rane D, Dharne MS. 2018. Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region. 3 Biotech 8(11):463.
  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41.
  • Chi R, Xiao C, Gao H. 2006. Bioleaching of phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans. Miner Eng 19(9):979–981.
  • Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I. 2008. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146(2):657–668.
  • Delorme TA, Angle JS, Coale FJ, Chaney RL. 2000. Phytoremediation of phosphorus-enriched soils. Int J Phytorem 2(2):173–181.
  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE. 2005. Standard Methods for the Examination of Water and Wastewater. 21st Centennial ed. Washington, DC: American Public Health Association, p146–157.
  • Farhat MB, Fourati A, Chouayekh H. 2013. Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl Biochem Biotechnol 170(7):1738–1750.
  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC. 2000. Processes governing phosphorus availability in temperate soils. J Environ Qual 29(1):15–23.
  • Gavini F, Ferragut C, Izard D, Trinel PA, Leclerc H, Lefebvre B, Mossel DAA. 1979. Serratia fonticola, a new species from water. Int J Syst Evol Microbiol 29(2):92–101.
  • Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ. 2015. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 138:995–1000.
  • Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15.
  • Grimont PA, Grimont F, Starr MP. 1981. Serratia species isolated from plants. Curr Microbiol 5(5):317–322.
  • Illmer P, Barbato A, Schinner F. 1995. Solubilization of hardly-soluble alpo4 with p-solubilizing microorganisms. Soil Biol Biochem 27(3):265–270.
  • Kamensky M, Ovadis M, Chet I, Chernin L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35(2):323–331.
  • Khan AR, Park GS, Asaf S, Hong SJ, Jung BK, Shin JH. 2017. Complete genome analysis of Serratia marcescens RSC-14: a plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS One 12(2):e0171534.
  • Kim KY, Jordan D, Krishnan HB. 2010. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277.
  • Koppelaar RHEM, Weikard HP. 2013. Assessing phosphate rock depletion and phosphorus recycling options. NATO ASI Ser Ser I 23(6):1454–1466.
  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, Kumar V, Dhaliwal HS, Saxena AK. 2021. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31(1):43–75.
  • Lavania M, Nautiyal CS. 2013. Solubilization of tricalcium phosphate by temperature and salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res 7:4403–4413.
  • Li B, Bicknell K, Renwick A. 2019. Peak phosphorus, demand trends and implications for the sustainable management of phosphorus in china. Resour Conserv Recycl 146:316–328.
  • Li L, Lv Z, Zuo Z, Yang Z, Yuan X. 2016. Effect of energy source and leaching method on bio-leaching of rock phosphates by Acidithiobacillus ferrooxidans. Hydrometallurgy 164:238–247.
  • Li L, Zuo Z, Lv Z, Yang Z, Qi X, Zhou W, Guan H, Liu Y, Mao W. 2018. Isolation and characterization of Acidithiobacillus caldus tst3 and the effect of pre-cultivation on its solubilization of phosphorous from rock phosphates. Hydrometallurgy 177:86–93.
  • Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6:25313.
  • Ludueña LM, Anzuay MS, Angelini JG, Barros G, Luna F, Monge MP, Fabra A, Taurian T. 2017. Role of bacterial pyrroloquinoline quinone in phosphate solubilizing ability and in plant growth promotion on strain Serratia sp. S119. Symbiosis 72(1):31–43.
  • Ludueña LM, Anzuay MS, Magallanes-Noguera C, Tonelli ML, Ibañez FJ, Angelini JG, Fabra A, McIntosh M, Taurian T. 2017. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119. Res Microbiol 168(8):710–721.
  • Ludueña MS, Anzuay MS, Angelini JG, Mcintosh M, Becker A, Rupp O. 2018. S119: a potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms. Appl Soil Ecol. 126:107–112.
  • Novak JM, Chan ASK. 2002. Development of P-hyperaccumulator plant strategies to remediate soils with excess P concentrations. Crit Rev Plant Sci 21(5):493–509.
  • Perez E, Sulbaran M, Ball MM, Yarzabal LA. 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39(11):2905–2914.
  • Pikovskaya. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370.
  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287(1-2):15–21.
  • Sharma NC, Starnes DL, Sahi SV. 2007. Phytoextraction of excess soil phosphorus. Environ Pollut 146(1):120–127.
  • Sharpley AN, McDowell RW, Kleinman PJA. 2001. Phosphorus loss from land to water: integrating agricultural and environmental management. Plant Soil 237(2):287–307.
  • Sims JT, Edwards AC, Schoumans OF, Simard RR. 2000. Integrating soil phosphorus testing into environmentally-best agricultural management practices. J Environ Qual 29(1):60–71.
  • Vilar CC, Costa ACSD, Hoepers A, Souza Junior IGD. 2010. Maximum phosphorus adsorption capacity as related to iron and aluminum forms in subtropical soils. Rev Bras Ciênc Solo 34(4):1059–1068.
  • Whitehead DC. 2001. Nutrient elements in grassland: soil-plant-animal relationships. Grass Forage Sci 89:209.
  • Wu J, Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west china. Expo Health 8(3):311–329.
  • Xiao CQ, Wu XY, Zhu L, Yu T, Xu ZH, Chi RA. 2019. Enhanced biosolubilization of mid-low grade phosphate rock by formation of microbial consortium biofilm from activated sludge. Physicochem Probl Miner Process 55:217–224.
  • Xiao CQ, Zhang HX, Fang YJ, Chi RA. 2013. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing aspergillus niger whak1. Appl Biochem Biotechnol 169(1):123–133.
  • Yadav H, Gothwal RK, Nigam VK, Sinha-Roy S, Ghosh P. 2013. Optimization of culture conditions for phosphate solubilization by a thermo-tolerant phosphate-solubilizing bacterium Brevibacillus sp. bisr-hy65 isolated from phosphate mines. Biocatal Agric Biotechnol 2(3):217–225.
  • Yu VL. 1979. Serratia marcescens: historical perspective and clinical review. N Engl J Med 300(16):887–893.
  • Zangarini S, Sciarria TP, Tambone F, Adani F. 2020. Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. Environ Sci Pollut Res Int 27(6):5730–5743.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.