604
Views
7
CrossRef citations to date
0
Altmetric
Articles

Bio-oxidation of Gold from Refractory Sulfide Ores: A Journey Ahead

, ORCID Icon, , &
Pages 399-415 | Received 18 Apr 2021, Accepted 02 Sep 2021, Published online: 23 Sep 2021

References

  • Abdollahi H, Maleki S, Sayahi H, Gharabaghi M, Darvanjooghi MHK, Magdouli S, Brar SK. 2021. Superadsorbent Fe3O4-coated carbon black nanocomposite for separation of light rare earth elements from aqueous solution: GMDH-based Neural Network and sensitivity analysis. J Hazard Mater 416:125655.
  • Ahmadi A, Ranjbar M, Schaffie M. 2012. Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems. Miner Eng 34:11–18.
  • Aitimbetov T, White DM, Seth I. 2005. Biological gold recovery from gold–cyanide solutions. Int J Miner Process 76(1–2):33–42.
  • Astudillo C, Acevedo F. 2009. Effect of CO2 air enrichment in the bio-oxidation of a refractory gold concentrate by Sulfolobus metallicus adapted to high pulp densities. Hydrometallurgy 97(1–2):94–97.
  • Azizitorghabeh A, Wang J, Ramsay JA, Ghahreman A. 2021. A review of thiocyanate gold leaching–chemistry, thermodynamics, kinetics and processing. Miner Eng 160:106689.
  • Bal B, Ghosh S, Das AP. 2019. Microbial recovery and recycling of manganese waste and their future application: a review. Geomicrob J 36(1):85–96.
  • Ballester A, Blázquez ML, González F, Muñoz JA. 2007. Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. In: Donati ER, Sand W, editors. Microbial Processing of Metal Sulfides. Dordrecht: Springer, p77–101.DOI: 10.1007/1-4020-5589-7_4
  • Bartlett RW. 1996. Bio-oxidation heap pretreatment of sulfide refractory gold ore. Miner Process Extr Metall Rev 16(2):89–124.
  • Bartlett RW. 1998. Solution mining: leaching and fluid recovery of materials. Psychology Press, 2nd Ed. Amsterdam: Gordon and Breach Science Publishers.
  • Bartlett RW, Prisbrey KA. 1996. Convection and diffusion limited aeration during biooxidation of shallow ore heaps, Int J Miner Process 47:75–91.
  • Bennett C, McBride D, Cross M, Gebhardt J. 2012. A comprehensive model for copper sulphide heap leaching: part 1 basic formulation and validation through column test simulation. Hydrometallurgy 127–128:150–161.
  • Bhakta P, Arthur B. 2002. Heap bio-oxidation and gold recovery at Newmont mining: first-year results. JOM 54(10):31–34.
  • Bonnefoy V, Holmes DS. 2012. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14(7):1597–1611.
  • Boon M, Heijnen J. 1998. Gas–liquid mass transfer phenomena in bio-oxidation experiments of sulphide minerals: a critical review of literature data. Hydrometallurgy 48(2):187–204.
  • Bouffard S, Dixon D. 2002. On the rate-limiting steps of pyritic refractory gold ore heap leaching: results from small and large column tests. Miner Eng 15(11):859–870.
  • Bouffard S, Dixon D. 2004. Heap bio-oxidation of refractory gold ores: current state of the art. Miner Process Extr Metall Rev 25(3):159–192.
  • Bouffard SC, Tshilombo A, West-Sells PG. 2009. Use of lignosulfonate for elemental sulfur bio-oxidation and copper leaching. Miner Eng 22(1):100–103.
  • Brar KK, Magdouli S, Etteieb S, Zolfaghari M, Fathollahzadeh H, Calugaru L, Komtchou S-P, Tanabene R, Brar SK. 2021. Integrated bioleaching-electrometallurgy for copper recovery–a critical review. J Clean Prod 291:125257.
  • Brehm U, Gorbushina A, Mottershead D. 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. In: Noffke N, editor. Geobiology: Objectives, Concepts, Perspectives. Netherlands: Elsevier, p117–129.
  • Brierley JA, Kulpa CF Jr. 1993. Biometallurgical treatment of precious metal ores having refractory carbon content. US5244493A.
  • Brierley C. 2008. How will biomining be applied in future? Trans Nonferrous Met Soc China 18(6):1302–1310.
  • Brierley J. 2000. Expanding role of microbiology in metallurgical processes. Mining Eng 52(11):49–53.
  • Brierley CL, Brierley JA. 2013. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97(17):7543–7552.
  • Brierley JA, Wan RY. 1995. Gold recovery from refractory sulfidic-carbonaceous ore. Part I. Bio-oxidation-heap pretreatment. In: Warren GW, editor. The Minerals, Metals & Materials Society. EPD Congress, p155–163.
  • Bulaev A. 2020. Effect of organic carbon source on pyrite bio-oxidation by moderately thermophilic acidophilic microorganisms. Microbiology 89(3):301–308.
  • Burbank A, Choi N, Prisbrey K. 1990. Biooxidation of refractory gold ores in heap. In: Fuerstenau MC, Hendrix JL, editors. Advances in gold and silver processing. Society for mining, metallurgy, and exploration, Inc., Colorado, USA: Littleton, p151–159.
  • Burford E, Fomina M, Gadd G. 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67(6):1127–1155.
  • Cao P, Zhang S, Zheng Y. 2020. Characterization and gold extraction of gold-bearing dust from carbon-bearing gold concentrates. Miner Process Extr Metall Rev 1–13.DOI: 10.1080/08827508.2020.1854248
  • Chapman J, Marchant P, Lawrence R, Knopp R. 1993. Bio-oxidation of a refractory gold bearing high arsenic sulphide concentrate: a pilot study. FEMS Microbiol Rev 11(1–3):243–252.
  • Choi Y, Gharelar AG. 2020. Method for pre-treatment of gold-bearing oxide ores. US20140356225A1.
  • Clark M, Batty J, Van Buuren C, Dew D, Eamon M. 2006. Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy 83(1–4):3–9.
  • Coupland K, Johnson DB. 2008. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279(1):30–35.
  • de Oliveira C, de Lima GF, de Abreu HA, Duarte HA. 2012. Duarte reconstruction of the chalcopyrite surfaces—a DFT Study. J Phys Chem C 116(10):6357–6366.
  • Demergasso C, Véliz R, Galleguillos P, Marín S, Acosta M, Zepeda V, Zeballos J, Henríquez F, Pizarro R, Bekios-Calfa J. 2018. Decision support system for bioleaching processes. Hydrometallurgy 181:113–122.
  • Deng T, Liao M, Wang M, Chen Y-W, Belzile N. 2000. Investigations of accelerating parameters for the bio-oxidation of low-grade refractory gold ores. Miner Eng 13(14–15):1543–1553.
  • Ehrlich H. 2004. Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy: a brief history. Eur J Miner Process Environ Protect 4(2):102–112.
  • Elomaa H, Sinisalo P, Rintala L, Aromaa J, Lundström M. 2020. Process simulation and gate-to-gate life cycle assessment of hydrometallurgical refractory gold concentrate processing. Int J Life Cycle Assess 25(3):456–477.
  • Epiforov AV, Seleznev AN, Emelyanov YYe, Balikov SV, Shketova LYe, Kopylova NV. 2017. Heap bio-oxidation of gold-sulphide and polymetallic ores and tailings. SSP 262:122–125.
  • Escobar B, Buccicardi S, Morales G, Wiertz J. 2010. Bio-oxidation of ferrous iron and sulphide at low temperatures: implications on acid mine drainage and bioleaching of sulphide minerals. Hydrometallurgy 104(3–4):454–458.
  • Etteieb S, Magdouli S, Komtchou SP, Zolfaghari M, Rayen T, Brar KK, Calugaru IL, Brar SK. 2021b. Selenium speciation and bioavailability from mine discharge to the environment: a field study in Northern Quebec, Canada. Environ Sci Pollut Res.DOI: 10.1007/s11356-021-14335-1
  • Etteieb S, Zolfaghari M, Magdouli S, Brar KK, Brar SK. 2021a. Performance of constructed wetland for selenium, nutrient and heavy metals removal from mine effluents. Chemosphere 281:130921.
  • Feng D, Van Deventer J. 2001. Preg-robbing phenomena in the thiosulphate leaching of gold ores. Miner Eng 14(11):1387–1402.
  • Gahan CS, Srichandan H, Kim DJ, Akcil A. 2010. Biohydrometallurgy and biomineral processing technology: a review on its past, present and future. Res J Rec Sci 1(10):85–99.
  • Garcia-Ochoa J, Khalfet R, Poncin S, Wild G. 1997. Hydrodynamics and mass transfer in a suspended solid bubble column with polydispersed high density particles. Chem Eng Sci 52(21–22):3827–3834.
  • Garrido-Cardenas JA, Esteban-García B, Agüera A, Sánchez-Pérez JA, Manzano-Agugliaro F. 2020. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int J Environ Res Public Health 17(1):170.
  • Ghorbani Y, Becker M, Mainza A, Franzidis J-P, Petersen J. 2011. Large particle effects in chemical/biochemical heap leach processes–a review. Miner Eng 24(11):1172–1184.
  • Ghosh S, Bal B, Das A. 2018. Enhancing manganese recovery from low-grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiol J 35(3):242–246.
  • Ghosh S, Das AP. 2018. Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese. Sci Rep 8(1):8212–8257.
  • Ghosh S, Mohanty S, Akcil A, Sukla L, Das A. 2016. A greener approach for resource recycling: Manganese bioleaching. Chemosphere 154:628–639.
  • Groudev S, Spasova I, Groudeva V, Ivanov I. 1995. Pilot scale microbial heap leaching of gold from a refractory ore at the Zlata Mine, Bulgaria. Biohydrometall Process 1:425–435.
  • Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. 2018. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes 9(2):116.
  • Helmut B, Stefan L, Mohammad AF, Daniel M. 2008. Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17.
  • Hold C, Andrews B, Asenjo J. 2009. A stoichiometric model of Acidithiobacillus ferrooxidans ATCC 23270 for metabolic flux analysis. Biotechnol Bioeng 102(5):1448–1459.
  • Holmes PR, Crundwell FK. 2000. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim Cosmochim Acta 64(2):263–274.
  • Holtum D, Murray D. 1994. Bacterial heap leaching of refractory gold/sulphide ores. Miner Eng 7(5–6):619–631.
  • Ilbert M, Bonnefoy V. 2013. Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta 1827(2):161–175.
  • Jennings SR, Dollhopf DJ, Inskeep WP. 2000. Acid production from sulfide minerals using hydrogen peroxide weathering. Appl Geochem 15(2):235–243.
  • Johnson D. 2008. Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates. Trans Nonferrous Met Soc China 18(6):1367–1373.
  • Johnson DB, Kanao T, Hedrich S. 2012. Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96.
  • Johnson DB. 2013. Development and application of biotechnologies in the metal mining industry. Environ Sci Pollut Res Int 20(11):7768–7776.
  • Kaksonen AH, Deng X, Bohu T, Zea L, Khaleque HN, Gumulya Y, Boxall N, Morris C, Cheng KY. 2020. Prospective directions for biohydrometallurgy. Hydrometallurgy 195:105376.
  • Kaksonen AH, Mudunuru BM, Hackl R. 2014. The role of microorganisms in gold processing and recovery–a review. Hydrometallurgy 142:70–83.
  • Karthikeyan OP, Rajasekar A, Balasubramanian R. 2015. Bio-oxidation and biocyanidation of refractory mineral ores for gold extraction: a review. Crit Rev Environ Sci Technol 45(15):1611–1643.
  • Kimura S, Bryan CG, Hallberg KB, Johnson DB. 2011. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ Microbiol 13(8):2092–2104.
  • Konadu KT, Mendoza DM, Huddy RJ, Harrison ST, Kaneta T, Sasaki K. 2020. Biological pretreatment of carbonaceous matter in double refractory gold ores: a review and some future considerations. Hydrometallurgy 196:105434.
  • Kremser K, Thallner S, Schoen H, Weiss S, Hemmelmair C, Schnitzhofer W, Aldrian A, Guebitz GM. 2020. Stirred-tank and heap-bioleaching of shredder-light-fractions (SLF) by acidophilic bacteria. Hydrometallurgy 193:105315.
  • Kumar A, Saini HS, Kumar S. 2018. Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr Microbiol 75(2):194–201.
  • Kumar A, Saini HS, Şengör S, Sani RK, Kumar S. 2021. Bioleaching of metals from waste printed circuit boards using bacterial isolates native to abandoned gold mine. Biometals 1–16.DOI: 10.1007/s10534-021-00326-9
  • Langhans D, Lord A, Lampshire D, Burbank A, Baglin E. 1995. Bio-oxidation of an arsenic-bearing refractory gold ore. Miner Eng 8(1–2):147–158.
  • Li H, Li S, Ma P, Zhou Z, Long H, Peng J, Zhang L. 2021. Evaluation of a cleaner production for cyanide tailings by chlorination thermal treatments. J Clean Prod 281(1):124195.
  • Li J, Liang C, Ma C. 2015. Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J Mater Cycles Waste Manag 17(3):529–539.
  • Liu FW, Qiao XX, Xing K, Shi J, Zhou LX, Dong Y, Bi WL, Zhang J. 2020. Effect of nitrate ions on Acidithiobacillus ferrooxidans-mediated bio-oxidation of ferrous ions and pyrite. Curr Microbiol 77(6):1070–1080.
  • Llamas AA, Delgado AV, Capilla AV, Cuadra CT, Hultgren M, Peltomäki M, Roine A, Stelter M, Reuter M. 2019. Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. Miner Eng 131:51–65.
  • Magdouli S, Brar SK, Blais JF. 2018. Morphology and rheological behaviour of Yarrowia lipolytica: impact of dissolved oxygen level on cell growth and lipid composition. Process Biochem 65:1–10.
  • Mäkinen J, Bachér J, Kaartinen T, Wahlström M, Salminen J. 2015. The effect of flotation and parameters for bioleaching of printed circuit boards. Miner Eng 75:26–31.
  • Martinez P, Vera M, Bobadilla-Fazzini RA. 2015. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol 99(20):8337–8350.
  • Mihaylov BV, Hendrix JL. Gold recovery from a low-grade ore employing biological pretreatment in columns. In: Torma AE, Wey JE, Lakshmanan VI, editors. Biohydrometallurgical technologies. 1. Bioleaching processes. Proceedings of an International Biohydrometallurgy Symposium. Warrendale, Pa: The mineral, metals, and materials society; 1993. p. 499–511.
  • Mohammad AF, Marion S, Enrico P, Walter K, Helmut B. 2004. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326.
  • Mohanty S, Ghosh S, Bal B, Das AP. 2018. A review of biotechnology processes applied for manganese recovery from wastes. Rev Environ Sci Biotechnol 17(4):791–811.
  • Mohanty S, Ghosh S, Nayak S, Das A. 2017. Isolation, identification and screening of manganese solubilizing fungi from low-grade manganese ore deposits. Geomicrobiol J 34(4):309–316.
  • Mohanty S, Ghosh S, Nayak S, Das AP. 2017. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere 172:302–309.
  • Mousaid I, Kaya A. 2020. Experimental mines: research platforms for sustainable development. Available at SSRN https://ssrn.com/abstract=3591959.
  • Mubarok MZ, Winarko R, Chaerun SK, Rizki IN, Ichlas ZT. 2017. Improving gold recovery from refractory gold ores through biooxidation using iron-sulfur-oxidizing/sulfur-oxidizing mixotrophic bacteria. Hydrometallurgy 168:69–75.
  • Muravyov MI, Bulaev AG. 2013. Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its bio-oxidation. Miner Eng 45:108–114.
  • Nanthakumar B, Pickles C, Kelebek S. 2007. Microwave pretreatment of a double refractory gold ore. Miner Eng 20(11):1109–1119.
  • Ndlovu S. 2008. Biohydrometallurgy for sustainable development in the African minerals industry. Hydrometallurgy 91(1–4):20–27.
  • Ng WS, Wang Q, Chen M. 2020. A review of Preg-robbing and the impact of chloride ions in the pressure oxidation of double refractory ores. Miner Process Extr Metall Rev 1–28.
  • Norris P, Barr D, Hinson D. 1988. Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, and Kelly DP, editors. Biohydrometallurgy. Proceedings of International Symposium, Science and Technology Letters, Kew, p43–59.
  • Norris P, Barr D. 1988. Bacterial oxidation of pyrite in high temperature reactors. In: Norris PR, and Kelly DP, editors. Biohydrometallurgy, Proceedings of International Symposium, Science and Technology Letters, Kew, p532–536.
  • Ofori-Sarpong G, Osseo-Asare K, Tien M. 2011. Fungal pretreatment of sulfides in refractory gold ores. Miner Eng 24(6):499–504.
  • Olson G, Brierley J, Brierley C. 2003. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63(3):249–257.
  • Olson GJ, Clark TR. 2008. Bioleaching of molybdenite. Hydrometallurgy 93(1–2):10–15.
  • Outotec. 2018. Accessed April 14, 2021. Available at https://www.outotec.com/products-and-services/technologies/digital-solutions/hsc-chemistry/.
  • Petersen J, Dixon D. 2002. Thermophilic heap leaching of a chalcopyrite concentrate. Miner Eng 15(11):777–785.
  • Petersen J. 2010. Determination of oxygen gas–liquid mass transfer rates in heap bioleach reactors. Miner Eng 23(6):504–510.
  • Prabhakar A, Mishra S, Das AP. 2019. Isolation and identification of lead (Pb) solubilizing bacteria from automobile waste and its potential for recovery of lead from end of life waste batteries. Geomicrobiol J 36(10):894–903.
  • Pradhan N, Nathsarma KC, Rao KS, Sukla LB, Mishra BK. 2008. Heap bioleaching of chalcopyrite: a review. Miner Eng 21(5):355–365.
  • Rao MD, Singh KK, Morrison CA, Love JB. 2020. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv 10(8):4300–4309.
  • Rawlings DE, Dew D, Du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21(1):38–44.
  • Rawlings DE, Johnson DB. 2007a. Biomining. Berlin, Heidelberg: Springer.
  • Rawlings DE, Johnson DB. 2007b. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153(Pt 2):315–324.
  • Rawlings DE. 2002. Heavy metal mining using microbes. Annu Rev Microbiol 56(1):65–91.
  • Renman R, Jiankang W, Jinghe C. 2006. Bacterial heap-leaching: practice in Zijinshan copper mine. Hydrometallurgy 83(1–4):77–82.
  • Rizki IN, Tanaka Y, Okibe N. 2019. Thiourea bioleaching for gold recycling from e-waste. Waste Manag 84:158–165.
  • Saavedra A, Aguirre P, Gentina JC. 2020. Bio-oxidation of iron by Acidithiobacillus ferrooxidans in the presence of D-galactose: understanding its influence on the production of EPS and cell tolerance to high concentrations of iron. Front Microbiol 11:759.
  • Sand W, Gehrke T, Jozsa P-G, Schippers A. 2001. (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59(2–3):159–175.
  • Sand W, Gehrke T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157(1):49–56.
  • Sanket A, Ghosh S, Sahoo R, Nayak S, Das A. 2017. Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol J 34(1):71–80.
  • Sara M, Rouissi T, Brar S, Blais J. 2016. Life cycle analysis of potential substrates of sustainable biorefinery. In: Platform Chemical Biorefinery. Amsterdam: Elsevier, p55–76.
  • Stott M, Watling H, Franzmann P, Sutton D. 2000. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13(10–11):1117–1127.
  • Swash P, Monhemius A. 1998. Scorodite process: a technology for the disposal of arsenic in the 21st century. In: Castro SH, Vergara F, Sanchez MA, editors. Effluent Treatment in the Mining Industry. Concepción: University of Concepción, p119–161.
  • Thiel R, Smith ME. 2004. State of the practice review of heap leach pad design issues. Geotext Geomembr 22(6):555–568.
  • Tributsch H. 2001. Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185.
  • Van Aswegen PC, Van Niekerk J. 2004. New developments in the bacterial oxidation technology to enhance the efficiency of the BIOX process. Proceedings of the BacMin Conference, Bendigo, November 2004, p181–190.
  • Vriens B, Plante B, Seigneur N, Jamieson H. 2020. Mine waste rock: insights for sustainable hydrogeochemical management. Minerals 10(9):728.
  • Watling H. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84(1–2):81–108.
  • Watling HR. 2013. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options. Hydrometallurgy 140:163–180.
  • Wu B, Shang H, Wen J, Liu M, Zhang Q, Cui X. 2020. Well-controlled stirring tank leaching to improve bio-oxidation efficiency of a high sulfur refractory gold concentrate. J Cent South Univ 27(5):1416–1423.
  • Xing D, Magdouli S, Zhang J, Koubaa A. 2020. Microbial remediation for the removal of inorganic contaminants from treated wood: recent trends and challenges. Chemosphere 258:127429.
  • Xu R, Li Q, Meng F, Yang Y, Xu B, Yin H, Jiang T. 2020. Bio-oxidation of a double refractory gold ore and investigation of Preg-robbing of gold from thiourea solution. Metals 10(9):1216.
  • Yadollahi A, Abdollahi H, Ardejani FD, Mirmohammadi M, Magdouli S. 2021. Bio-oxidation behavior of pyrite, marcasite, pyrrhotite, and arsenopyrite by sulfur- and iron-oxidizing acidophiles. Bioresour Technol Rep 15:100699.
  • Yen W-T, Amankwah RK, Choi Y. 2009. Microbial pre-treatment of double refractory gold ores. US20090158893A1.
  • Yeung WJ, Whhrwr R, Cortie MB, Ferry M. 2007. Equal channel angular extrusion of high purity gold. Mater Forum 31:31–35.
  • Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. 2019. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 35(4):60.
  • Zhang D-R, Chen H-R, Xia J-L, Nie Z-Y, Fan X-L, Liu H-C, Zheng L, Zhang L-J, Yang H-Y. 2020. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. J Hazard Mater 384:121359.
  • Zhao HB, Zhang YS, Zhang X, Qian L, Sun ML, Yang Y, Zhang YS, Wang J, Kim H, Qiu GZ. 2019. The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview. Miner Eng 136:140–154.
  • Zhou JY, Cabri LJ. 2004. Gold process mineralogy: objectives, techniques, and applications. JOM 56(7):49–52.
  • Zolfaghari M, Magdouli S, Tanabene R, Komtchou SP, Martial R, Saffar T. 2020. Pragmatic strategy for the removal of ammonia from gold mine effluents using a combination of electro-coagulation and zeolite cation exchange processes: a staged approach. J Water Process Eng 37:101512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.