225
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Bioremediation of Heavy Metals from Phosphate Processing Wastewater Using the Indigenous Bacterium Serratia rubidaea NCTC12971

, , , , , , & show all
Pages 914-923 | Received 27 Mar 2021, Accepted 07 Sep 2021, Published online: 28 Sep 2021

References

  • Aggangan N, Cadiz N, Llamado A, Raymundo A. 2017. Jatropha curcas for bioenergy and bioremediation in mine tailing area in Mogpog, Marinduque, Philippines. Energy Procedia 110:471–478.
  • Amalia S, Juan I. 2019. Biocontrol capabilities of the genus Serratia. Phytochem Rev 19:577–587.
  • Anusha P, Natarajan D. 2020. Bioremediation potency of multi metal tolerant native bacteria Bacillus cereus isolated from bauxite mines, kolli hills, Tamilnadu – a lab to land approach. Biocatal Agric Biotechnol 25:101581.
  • APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th Edition. Washington: American Public Health Association.
  • Banerjee G, Pandey S, Ray AK, Kumar R. 2015. Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, floculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226(4):91.
  • Bhupendra P, Pooja S, Suvarna S. 2019. Assessment of the bioremediation efficacy of the mercury resistant bacteria isolated from Mithi River. Water Supply 19(1):191–199.
  • Borgi MA, Saidi I, Moula A, Rhimi S, Rhimi M. 2020. The attractive Serratia plymuthica BMA1 strain with high rock phosphate-solubilizing activity and its effect on the growth and phosphorus uptake by Vicia faba L. Geomicrobiol 37(5):437–445.
  • Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538.
  • Carlos M, Ferreira H, Helena M, Soares VM, Eduardo VS. 2019. Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ 682:779–799.
  • Chang CH, Yang SS. 2009. Thermotolerant phosphate solubilizing microbes for multifunctional biofertilizer preparation. Bioresour Technol 100(4):1648–1658.
  • Colica G, Li H, Rossi F, Li D, Liu Y, Roberto DP. 2014. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol and Biochem 68:62–70.
  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H. 2015. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212.
  • Ellis RH, Roberts EH. 1980. Improved equations for the prediction of seed longevity. Ann Bot 45(1):13–30.
  • Fu JW, Liu X, Han YH, Mei H, Cao Y, Oliveira LM, Liu Y, Rathinasabapathi B, Chen Y, Ma LQ. 2017. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. J Hazard Mater 330:68–75.
  • Gadd GM. 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28.
  • Gnandi K, Tchangbedji G, Killi K, Baba G, Abbe K. 2006. The impact of phosphate mine tailing on the bioaccumulation of heavy metals in marine fish and crustacean from the coastal zone at Togo. Mine Water Environ 25(1):56–62.
  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605.
  • Hayat K, Menhas S, Bundschuh J, Zhou P, Niazi NK, Amna, Hussain A, Hayat S, Ali H, Wang J, et al. 2020. Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. Inter J of Phytoremed 22(13):1372–1384.
  • Jarvis I, Burnett W, Nathan Y, Almbaydin FSM, Attia AKM, Castro LN, Flicoteaux R, Hilmy ME, Husain V, Qutawnah AA, et al. 1994. Phosphorite geochemistry: State-of-the-art and environmental concerns. Eclogae Geol Helv 87:643–700.
  • Jeong S, Moon HS, Nam K. 2014. Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity. J Hazard Mater 280:536–543.
  • Kamika L, Momba MNB. 2013. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 13(1):28–37.
  • Kamran IS, Abidullah S, Muhammad IA, Muhammad Z, Haziq H, Javed H, Owais A, Muhammad J. 2015. Application of plant growth promoting rhizobacteria in bioremediation of heavy metal polluted soil. Asia Pac J Multidiscip Res. 3(4):179–185.
  • Karkey A, Joshi N, Chalise S, Joshi S, Shrestha S, Nguyen TNT, Dongol S, Basnyat B, Baker S, Boinett CJ. 2018. Outbreaks of Serratia marcescens and Serratia rubidaea bacteremia in a central Kathmandu hospital following the 2015 earthquakes. Trans R SocTrop Med Hyg 112(10):467–472.
  • Kumar KV, Srivastava S, Singh N, Behl HM. 2009. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57.
  • Liu X, Jia J, Atkinson S, CáMara M, Gao K, Li H, Cao J. 2010. Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World J Microbiol Biotechnol 26(8):1465–1471.
  • Madhaiyan M, Poonguzhali S, Sa T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L). Chemosphere 69(2):220–228.
  • Mani R, Helena F. 2008. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Biores Technol 99(9):3491–3498.
  • Marwa N, Singh N, Srivastava S, Saxena G, Pandey V, Singh N. 2019. Characterizing the hypertolerance potential of two indigenous bacterial strains (Bacillus flexus and Acinetobacter junii) and their efficacy in arsenic bioremediation. J Appl Microbiol 126(4):1117–1127.
  • Mekki A, Sayadi S. 2017. Study of heavy metal accumulation and residual toxicity in soil saturated with phosphate processing wastewater. Water Air Soil Pollut 228(6):215.
  • Mekki A, Fki F, Kchaou M, Sayadi S. 2015. Short-term effects of gray wastewater on a Mediterranean sandy soil. Clean Soil Air Water 43(5):754–760.
  • Mekki A, Awali A, Aloui F, Loukil S, Sayadi S. 2017. Characterization and toxicity assessment of wastewater from rock phosphate processing in Tunisia. Mine Water Environ. 36(4):502–507.
  • Mela F, Fritsche K, de Boer W, Veen JAV, de Graaff LH, Berg MVD, Leveau JHJ. 2011. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. Isme J. 5(9):1494–1504.
  • Mendoza HJC, Perea VYS, Arriola MJ, Martínez SSM, Pérez OG. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plan growth-promoting bacteria. Microbiol Res 188(189):53–61.
  • Mishra V. 2014. Biosorption of zinc ion: a deep comprehension. Appl Water Sci 4(4):311–332.
  • Moula A, Borgi MA, Loukil S, Chaieb M, Mekki A. 2020. Assessment of phosphate laundries wastewater phytotoxicity and biotreatment assays. Clean Soil Air Water 48(11):2000077.
  • Nair A, Juwarkar A, Singh S. 2007. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180(1–4):199–212.
  • Nalini S, Parthasarathi P. 2014. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238.
  • Nasrin J, Abdolreza A, Hossein AA, Hadi AR, Farhad R. 2019. Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils. Soil Sci and Plant Nutrit 20:206–219.
  • Nathalie NK, Mukesh D, Georgios T, Georgios M, Emmanouil NP, Magnus K, Anastasia LL, Dan FJ. 2016. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7. Arch Microbiol 198:369–377.
  • Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 170(1):265–270. doi:https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.
  • Pal A, Paul AK. 2008. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64.
  • Pengpeng L, Amy HYK, Jingwei J, Tingting R, Dongqing X, Weiwu W, Frederick CL. 2015. Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLOS One 10(4):e0123061.
  • Ponniah A, Devarajan N. 2020. Bioremediation potency of multi metal tolerant native bacteria Bacillus cereus isolated from bauxite mines, kolli hills, Tamilnadu – a lab to land approach. Biocatal Agricul Biotechnol 25:101581.
  • Rajkumar M, Ae N, Prasad MNV, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnol 28(3):142–149.
  • Ramasamy K, Kamaludeen S, Parwin B. 2006. Bioremediation of metals: microbial processes and techniques. In Singh, SN, Tripathi, RD, editors. Environmental Bioremediation Technologies Berlin: Springer, p173.
  • Roca A, Pizarro-Tobías P, Udaondo Z, Fernández M, Matilla MA, Molina-Henares MA, Molina L, Segura A, Duque E, Ramos J-L. 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol 15(3):780–794.
  • Sabyasachi B, Seema S, Shailesh P, Maneesh SB, Amit P, Krishna G. 2020. Biocontrol potential of Pseudomonas azotoformans, Serratia marcescens and Trichoderma virens against Fusarium wilt of Dalbergiasissoo. Forest Pathol 50:e12581.
  • Saidi I, Yousfi N, Borgi MA. 2017. Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. Plant Nutrit 40(16):2326–2335.
  • Sayyed RZ, Patel P R, Reddy MS. 2013. Role of PGPR in bioremediation of heavy metal ions and plant growth promotion of wheat and peanut grown in heavy metal contaminated soil. In proceedings of 3rd Asian conference on plant growth-promoting rhizobacteria (PGPR) and other microbials: Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture, 21–24 April, 2013 (Manila: Asian PGPR Society for Sustainable Agriculture), 112–128.
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56.
  • Shahid M, Javed MT, Masood S, Akram MS, Azeem M, Ali Q, Gilani R, Basit F, Shahid S, Abdul R. 2019. Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Appl Microbiol Biotechnol 103(15):6007–6021.
  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. 2008. Characterization of heavymetal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170.
  • Sharma S, Shukla PK, Singh NK, Singh V, Bisht S, Kumar V. 2013. Rhizoremediation: a promising rhizosphere technology. In: Yogesh Bhagwan Patil and Prakash Rao, editors. Applied Bioremediation – Active and Passive Approaches. India: IntechOpen. DOI: https://doi.org/10.5772/56905
  • Singh D, Singh SK, Singh VK, Gupta A, Aamir M, Kumar A. 2020. Plant growth–promoting bacteria and their role in environmental management. In: Singh P, Kumar A, and Borthakur A, editors. Abat Environ Pollut, Elsevier, p. 161–175.
  • Srarfi F, Raouen R, Roland B, Martina IG, Nadhem B, Najet SS. 2019. Stream sediments geochemistry and the influence of flood phosphate mud in mining area, Metlaoui, Western south of Tunisia. J Environ Earth Sci 5:211.
  • Syed GD, Deepa CK, Ashok P. 2011. Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J Microbiol Biotechnol 27(2):259–265.
  • Tang L, Zeng GM, Shen GL, Li YP, Zhang Y, Huang DL. 2008. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol 42(4):1207–1212.
  • Tirry N, Tahri JN, Sayel H, Kouchou A, Bahafid W, Asri M, El Ghachtouli N. 2018. Screening of plant growth promoting traits in heavy metals resistant bacteria: PROSPECTS in phytoremediation. J Genet Eng Biotechnol 16(2):613–619.
  • Tsui MT, Chu LM. 2003. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52(7):1189–1197.
  • Usha D, Indu K, Navinder K, Deepak S, Srikrishna S, Adesh KS. 2013. Draft genome sequence of plant-growth-promoting rhizobacterium Serratia fonticola strain AU-AP2C, isolated from the Pea rhizosphere. Genome Announc 1(6):e01022-13.
  • Whipps JM. 1987. Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol 107(1):127–142.
  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, et al. 2010. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Biores Technol 101(6):1668–1674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.