288
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Isolation, Identification and Characterization of Phosphate Solubilizing Bacteria from Jhum Field of Mizoram, India

, &
Pages 924-933 | Received 06 Jun 2021, Accepted 11 Sep 2021, Published online: 29 Sep 2021

References

  • Akari PP, Thet NT. 2020. Traditional knowledge on shifting cultivation of local communities in Bago Mountains, Myanmar. Journal of Forest Research. 25(5):347–353. doi: https://doi.org/10.1080/13416979.2020.1764166.
  • Alewell C, Ringeval B, Ballabio C, Robinson DA, Panagos P, Borrelli P. 2020. Global phosphorus shortage will be aggravated by soil erosion. Nat Commun 11(1):4546.
  • Anand K, Kumari B, Mallick MA. 2016. Phosphate solubilizing microbes: an effective and alternative approach as bio-fertilizers. Int J Pharm Sci 8(2):37–40.
  • Anggrainy ED, Syarifain RI, Hidayat A, Solihatin E, Suherman C, Fitriatin BN, Simarmata T. 2020. Shifting of microbial biodiversity and soil healthin rhizomicrobiome of natural forest and agricultural soil. Open Agric 5(1):936–942.
  • Brown DR. 2006. Personal preferences and intensification of land use: their impact on southern Camaroonian slash-and-burn. Agroforest Syst 68(1):53–67.
  • Casida LE, Klein DA, Santoro T. 1964. Soil dehydrogenase activity. Soil Sci 98:371–376.
  • Chaiharn M, Lumyong S. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J Microbiol Biotechnol 25(2):305–314.
  • Chawngthu L, Hnamte R, Lalfakzuala R. 2020. Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiol J 37(4):366–375. doi:https://doi.org/10.1080/01490451.2019.1709108
  • Chen J, Zhao G, Wei Y, Dong Y, Hou L, Jiao R. 2021. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci Rep 11(1):9081.
  • Chen Q, Liu S. 2019. Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Front Microbiol 10:2171.
  • Dal Cortivo C, Ferrari M, Visioli G, Lauro M, Fornasier F, Barion G, Panozzo A, Vamerali T. 2020. Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Front Plant Sci 11:72.
  • Das A, Ghosh PK, Patel DP, Munda GC, Ngachan SV, Chowdhury P. Workshop Proceedings: Impact of Climate Change on Agriculture., Climate change in northeast India: recent facts and events-worry for agricultural management, 2006.
  • Dwivedi M. 2020. Gluconobacter. In: Amaresan, N, Senthil Kumar, M, Annapurna, K, Kumar, K, Sankaranarayanan, A, editors. Beneficial Microbes in Agro-Ecology. London: Academic Press, p521–544.
  • Egamberdiyeva D. 2005. Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region ofUzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168(1):94–99.
  • Elhaissoufi W, Khourchi S, Ibnyasser A, Ghoulam C, Rchiad Z, Zeroual Y, Lyamlouli K, Bargaz A. 2020. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Front Plant Sci 11:979.
  • Elias F, Woyessa D, Muleta D. 2016. Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. Int J Microbiol 2016:5472601.
  • Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. 2021. Plant growth-promoting rhizobacteria isolated from the jujube (Ziziphus lotus) plant enhance wheat growth, Zn uptake, and heavy metal tolerance. Agriculture 11(4):316.
  • Fan Z, Lu S, Liu S, Guo H, Wang T, Zhou J, Peng X. 2019. Changes in plant rhizosphere microbial communities under different vegetation restoration patterns in karst and non-karst ecosystems. Sci Rep 9(1):8761.
  • Gajda AM, Czyż EA, Dexter AR, Furtak KM, Grządziel J, Stanek-Tarkowska J. 2018. Effects of different soil management practices on soil properties and microbial diversity. Int Agrophys 32(1):81–91.
  • Giardina CP, Sanford RL, Jr, Døckersmith IC. 2000. Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Sci Soc Am J 64(1):399–405.
  • Grogan P, Lalnunmawia F, Tripathi SK. 2012. Shifting cultivation in steeply sloped regions: a review of management options and research priorities for Mizoram state, Northeast India. Agrofor. Syst. 84(2):163–177. doi: https://doi.org/10.1007/s10457-011-9469-1.
  • Gupta G, Parihar SG, Ahirwar KN, Singh V. 2015. Plant growth promoting rhizobacteria PGPR: current and future prospects for development of sustainable agriculture. JMBT 7:96–102.
  • Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. 2009. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 75(8):2253–2258.
  • Ingerslev M, Skov S, Sevel L, Pedersen LB. 2011. Element budgets of forest biomass combustion and ashfertilization—A Danish case-study. Biomass Bioenerg 35(7):2697–2704.
  • Jansone B, Samariks V, Okmanis M, Kļaviņa D, Lazdiņa D. 2020. Effect of high concentrations of wood ash on soil properties and development of young Norway spruce (Piceaabies (L.) karst) and Scots Pine (Pinus sylvestris L.). Sustainability 12(22):9479.
  • Joachim AWR, Kandiah S. 1948. The effect of shifting (Chena) cultivation and subsequent regeneration of vegetation on soil composition and structure. Trop Agric 104:3–11.
  • Kalayu G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7.
  • Kauffman J, Sanford R, Jr Cummings D, Salcedo I, Sampaio E. 1993. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74(1):140–151.
  • Khan V, Jilani MS, Akhtar SM, Naqvi S, Rasheed M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58.
  • Khiangte L, Ralte L. 2021. Effects of heavy metals on phosphatase enzyme activity and indole-3-acetic acid (IAA) production of phosphate solubilizing bacteria. Geomicrobiol J 38(6):494–503.
  • Koné B, Fofana M, Sorho F, Diatta S, Ogunbayo A, Moussa S. 2013. Nutrient constraint of rainfed rice production in foot slope soil of Guinea Forest in Côte d’Ivoire. Arch Agron Soil Sci. 60:735–746. doi: https://doi.org/10.1080/03650340.2013.836595.
  • Koné B, Amadji GL, Aliou S, Diatta S, Akakpo C. 2011. Nutrient constraint and yield potential of rice on upland soil in the south of the Dahoumey gap of West Africa. Arch Agron Soil Sci. 57:763–774. doi: https://doi.org/10.1080/03650340.2010.489554.
  • Kumar A, Bhargava P, Rai LC. 2010. Isolation and molecular characterization of phosphate solubilizing Enterobacter and Exiguobacterium species from paddy fields of Eastern Uttar Pradesh, India. Afr J Microbiol Res 4(9):820–829.
  • Lawrence D, Schlesinger WH. 2001. Changes in soil phosphorus during 200 years of shifting cultivation in Indonesia. Ecology. 82(10):2769–2780. doi: https://doi.org/10.1890/0012-9658(2001)082[2769:CISPDY]2.0.CO;2.
  • Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, Liao B, Shu WS, Li JT. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J 14(6):1600–1613.
  • Mahdi I, Fahsi N, Hafidi M, Allaoui A, Biskri L. 2020. Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa Willd. Microorganisms 8(6):948.
  • Maldonado S, Rodríguez A, Ávila B, Morales P, González MP, Angel JPAA, Olalde V, Bravo J, Jana C, Sierra C, et al. 2020. Enhanced crop productivity and sustainability by using native phosphate solubilizing rhizobacteria in the agriculture of arid zones. Front Sustain Food Syst 4:263.
  • Manjunatha RL, Singh NJ. 2020. Effect of fallow age on soil properties of Jhum fields in West Garo Hills District. J Pharmacogn Phytochem 9(2):591–597.
  • McGarity JW, Myers MG. 1967. A survey of urease activity in soil of northern New South Wales. Plant Soil 27(2):217–238. doi: https://doi.org/10.1007/BF01373391.
  • Miah S, Dey S, Sirajul Haque SM. 2010. Shifting cultivation effects on soil fungi and bacterial population in Chittagong Hill Tracts, Bangladesh. J Res 21(3):311–318.
  • Mishra R. 1968. Ecology Workbook. Oxford.
  • Nedelciu CE, Ragnarsdóttir KV, Stjernquist I, Schellens MK. 2020. Opening access to the black box: The need for reporting on the global phosphorus supply chain. Ambio 49(4):881–891.
  • Nosheen S, Ajmal I, Song Y. 2021. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13(4):1868.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington, DC: US Government Printing Office, USDA. p939.
  • Osborne CA, Galic M, Sangwan P, Janssen PH. 2005. PCR-generated artefact from 16S rRNA gene-specific primers. FEMS Microbiol Lett 248(2):183–187. 2:
  • Pandey A, Chaudhry S, Sharma A, Choudhar VS, Malviya MK, Chamoli S, Rinu K, Trivedi P, Palni LMS. 2011. Recovery of Bacillus and Pseudomonas spp. from the “‘fired plots’ under shifting cultivation in northeast India”. Curr Microbiol 62(1):273–280.
  • Pandey A, Tripathi A, Srivastava P, Choudhary KK, Dikshit A. 2019. Plant growth-promoting microorganisms in sustainable agriculture. In: Kumar, A, Singh, AK, Choudhary, KK, editors. Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology. Duxford, UK; Cambridge, MA: Woodhead Publishing, p1–19.
  • Pasha SV, Behera MD, Mahawar SK, Barik SK, Joshi SR. 2020. Assessment of shifting cultivation fallows in north-eastern India using Landsat imageries. Trop Ecol 61(1):65–75.
  • Piper CS. 1944. Soil and Plant Analysis. New York: Interscience Publishers, Inc.
  • Rafi MM, Krishnaveni MS, Charyulu PBBN. 2019. Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. Rec Dev Appl Microbiol Biochem 1(2):223–233.
  • Ramakrishnan PS, Toky OP. 1981. Soil nutrient status of hill agro-ecosystems and recovery pattern after slash and burn agriculture (Jhum) in north-eastern India. Plant Soil 60(1):41–64.
  • Rfaki A, Zennouhi O, Aliyat FZ, Nassiri L, Ibijbijen J. 2019. Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in Moroccan wheat (Triticum aestivum L.). Geomicrobiol J 37(3):1–12.
  • Rfaki A, Zennouhi O, Nassiri L, Ibijbijen J. 2018. Soil properties related to the occurrence of rock phosphate-solubilizing bacteria in the rhizosphere soil of faba bean (Vicia faba L.) in Morocco. Soil Syst 2(2):31.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. doi: https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Satyaprakash M, Nikitha T, Reddi EUB, Sadhana B, Vani SS. 2017. A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol App Sci 6(4):2133–2144.
  • Schofield RK, Taylor AW. 1955. The measurement of soil pH. Soil Sci Soc Am J 19(2):164–167.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587.
  • Stephen J, Shabanamol S, Rishad KS, Jisha MS. 2015. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3 Biotech 5(5):831–837.
  • Subbiah BV, Asija GL. 1956. A rapid procedure for the estimation of available nitrogen in soils. Current Sci 25:259.
  • Sudewi S, Ala A, Patandjengi B, Farid BDR, IOP Conference Series: Earth and Environmental Science, Isolation of phosphate solubilizing bacteria from the rhizosphere of local aromatic rice in Bada Valley Central Sulawesi, Indonesia. Bristol, UK: IOP Publishing Ltd, 2020.
  • Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S. 2020. Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants 9(11):1596.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1(4):301–330.
  • Tabatabai MA, Bremner JM. 1970. Arylsulfatase activity of soils. Soil Sci Soc Am J 34(2):225–229.
  • Tawnenga, Shankar U, Tripathi RS. 1997. Evaluating second year cropping on jhum fallows in Mizoram, north-eastern India: energy and economic efficiencies. J Biosci 22(5):605–613.
  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42 (2):117–126.
  • United States Geological Survey (USGS). 2019. Phosphate Rock. https://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2019phosp.pdf.
  • Walkley A, Black IR. 1934. An examination of Degtijareff method for determining soilorganic matter and proposed modification of the chromic acid titration. Soil Sci 37:29–38. doi: https://doi.org/10.1097/00010694-193401000-00003.
  • Xue PP, Carrillo Y, Pino V, Minasny B, McBratney AB. 2018. Soil properties drive microbial community structure in a large scale transect in south eastern Australia. Sci Rep 8(1):11725.
  • Yadav PK. 2013. Slash-and-burn agriculture in north-east. India J Expert Opin Environ Biol 2: 2–5(1):2–5. doi:https://doi.org/10.4172/2325-9655.1000102.
  • You M, Fang S, MacDonald J, Xu J, Yuan ZC. 2020. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiol Res 233:126395. Mar Epub Dec 14. PMID: 31865096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.