785
Views
15
CrossRef citations to date
0
Altmetric
Articles

Soil Fungi for Bioremediation of Pesticide Toxicants: A Perspective

, &
Pages 352-372 | Received 30 Jul 2021, Accepted 14 Dec 2021, Published online: 29 Dec 2021

References

  • Abraham J, Mukherjee P, Bose D, Dutta A. 2016. Utilization of monocrotophos by Aspergillus sojae strain JPDA1 isolated from sugarcane fields of Vellore district in India. Res J Pharm Technol 9:1451–1456.
  • Adelowo FE, Olu-Arotiowa OA, Amuda OS. 2014. Biodegradation of glyphosate by fungi species. Adv Biosci Biotechnol 2(1):104–109.
  • Ahmad KS. 2020. Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia Microbiol 65(5):801–810.
  • Ajiboye TO, Kuvarega AT, Onwudiwe DC. 2020. Recent strategies for environmental remediation of organochlorine pesticides. Appl Sci 10(18):6286.
  • Akhtar N, Mannan MAU. 2020. Mycoremediation: expunging environmental pollutants. Biotechnol Rep 26:e00452.
  • Alejandro CS, Humberto HS, María JF. 2011. Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. Afr J Microbiol Res 5(17):2512–2523.
  • Alfonso LF, Germán GV, del Carmen PCM, Hossein G. 2017. Adsorption of organophosphorus pesticides in tropical soils: the case of karst landscape of northwestern Yucatan. Chemosphere 166:292–299.
  • Arbeli Z, Fuentes CL. 2007. Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot 26(12):1733–1746.
  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J-C, García-Río L. 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260.
  • Aylward FO, Burnum-Johnson KE, Tringe SG, Teiling C, Tremmel DM, Moeller JA, Scott JJ, Barry KW, Piehowski PD, Nicora CD, et al. 2013. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl Environ Microbiol 79(12):3770–3778.
  • Barnard J. 2000. Oregon’s monster mushroom is world’s biggest living thing. The Independent, p8.
  • Bhalerao TS, Puranik PR. 2007. Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59(4):315–321.
  • Bhalerao TS. 2013. Biominerlization and possible endosulfan degradation pathway adapted by Aspergillus niger. J Microbiol Biotechnol 23(11):1610–1616.
  • Bharathkumari K, Sivakami R. 2018. Biodegradation of organophosphate pesticide using limnofungi. Int J Res Anal Rev 5(4):731u–735u.
  • Bhardwaj G, Cameotra SS, Chopra HK. 2013. Biosurfactants from fungi: a review. J Pet Environ Biotechnol 4(6):1–6.
  • Bhardwaj P, Singh KR, Jadeja NB, Phale PS, Kapley A. 2020. Atrazine bioremediation and its influence on soil microbial diversity by metagenomics analysis. Indian J Microbiol 60(3):388–391.
  • Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. 2021. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827.
  • Bhatt P, Zhang W, Lin Z, Pang S, Huang Y, Chen S. 2020. Biodegradation of allethrin by a novel fungus Fusarium proliferatum strain CF2, isolated from contaminated soils. Microorganisms 8(4):593–515.
  • Binkley D, Fisher RF. 2019. Ecology and management of forest soils. John Wiley & Sons.
  • Blackshaw RE, Molnar LJ, Larney FJ. 2005. Fertilizer manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot 24(11):971–980.
  • Blackwell M. 2011. The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438.
  • Bohme L, Langer U, Bohme F. 2005. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109(1–2):141–152.
  • Boschin G, D'Agostina A, Arnoldi A, Marotta E, Zanardini E, Negri M, Valle A, Sorlini C. 2003. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J Environ Sci Health B 38(6):737–746.
  • Bravim NPB, Alves AF, Orlanda JFF, Silva PBR. 2021. Selection of filamentous fungi that are resistant to the herbicides atrazine, glyphosate and pendimethalin. Acta Sci Agron 43:e51656.
  • Bujacz B, Wieczorek P, Krzysko-Lupicka T, Golab Z, Lejczak B, Kavfarski P. 1995. Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61(8):2905–2910.
  • Burke R, Cairney J. 2002. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12(3):105–116.
  • Büyüksönmez F, Rynk R, Hess TF, Bechinski E. 1999. Occurrence, degradation and fate of pesticides during composting: part I: composting, pesticides, and pesticide degradation. Compost Sci Util 7(4):66–82.
  • Caldwell B. 2005. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49(6):637–644.
  • Camargo-De-Morais MM, Ramos SAF, Pimentel MCB, De Morais MA, Lima Filho JL. 2003. Production of an extracellular polysaccharide with emulsifier properties by Penicillium citrinum. World J Microbiol Biotechnol 19(2):191–194.
  • Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE. 2017. Assessment of growth of Aspergillus spp. from agricultural soils in the presence of glyphosate. Rev Argent Microbiol 49(4):384–393.
  • Cavalero DA, Cooper DG. 2003. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol 103(1):31–41.
  • Celis R, Hermosín MC, Cox L, Cornejo J. 1999. Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environ Sci Technol 33(8):1200–1206.
  • Chan-Cheng M, Cambronero-Heinrichs JC, Masís-Mora M, Rodríguez-Rodríguez CE. 2020. Ecotoxicological test based on inhibition of fungal laccase activity: application to agrochemicals and the monitoring of pesticide degradation processes. Ecotoxicol Environ Saf 195:110419.
  • Chandrakala Y. 2016. Photosynthetic and biochemical analysis of tolerance of Anabaena sp. PCC 7119 to cypermethrin. Dissertation. Ravenshaw University, Cuttack, India.
  • Chandran P, Das N. 2010. Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2(21):6942–6953.
  • Chang X, Liang J, Sun Y, Zhao L, Zhou B, Li X, Li Y. 2020. Isolation, degradation performance and field application of the metolachlor-degrading fungus Penicillium oxalicum MET-F-1. Appl Sci 10(23):8556.
  • Chen S, Hu M, Liu J, Zhong G, Yang L, Rizwan-Ul-Haq M, Han H. 2011a. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater 187(1–3):433–440.
  • Chen S, Hu Q, Hu M, Luo J, Weng Q, Lai K. 2011c. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour Technol 102(17):8110–8116.
  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G. 2012. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLOS One 7(10):e47205.
  • Chen S, Yang L, Hu M, Liu J. 2011b. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90(2):755–767.
  • Chikere CB. 2013. Application of molecular microbiology techniques in bioremediation of hydrocarbons and other pollutants. BBJ 3(1):90–115.
  • Chiu SW, Ching ML, Fong KL, Moore D. 1998. Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol Res 102(12):1553–1562.
  • Christensen M. 1989. A view of fungal ecology. Mycologia 81(1):1–19.
  • Coche A, Babey T, Rapaport A, Vieublé-Gonod L, Garnier P, de Dreuzy JR. 2018. Interaction of porosity structures and microbial uptake dynamics in the degradation of pesticides a µm and mm scales. Saint-Malo: Geophysical Research.
  • Cullings K, Ishkhanova G, Henson J. 2008. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia 158(1):77–83.
  • da Silva AF, Banat IM, Giachini AJ, Robl D. 2021. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 44(10):2003–2034.
  • David PCL, Camilo LAJ, Farid REJ, Felipe MMJ, Stephanie PC, Julio RR, Janeth MCF, Carlos SRJ, Ana DAL, Santiago LPH, et al. 2018. Effect of domestic wastewater as co-substrate on biological stain wastewater treatment using fungal/Bacterial consortia in pilot plant and greenhouse reuse. JWARP 10(03):369–393.
  • Deng W, Lin D, Yao K, Yuan H, Wang Z, Li J, Zou L, Han X, Zhou K, He L, et al. 2015. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl Microbiol Biotechnol 99(19):8187–8198.
  • Deshmukh R, Khardenavis AA, Purohit HJ. 2016. Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264.
  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370.
  • Diez MC. 2010. Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267.
  • Ding JY, Wu SC. 1995. Partition coefficients of organochlorine pesticides on soil and on the dissolved organic matter in water. Chemosphere 30(12):2259–2266.
  • Driver F, Milner RJ. 1998. PCR applications to the taxonomy of entomopathogenic fungi. In: Bridge PD, Arora DK, Elander RP, Reddy CA, editors. Applications of PCR in mycology. Wallingford: CAB International, p153–186.
  • Ekenler M, Tabatabai MA. 2003. Tillage and residue management effects on β-glucosaminidase activity in soils. Soil Biol Biochem 35(6):871–874.
  • Eldin AM, Kamel Z, Hossam N. 2019. Isolation and genetic identification of yeast producing biosurfactants, evaluated by different screening methods. Micro Chem J 146:309–314.
  • Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S. 2013. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 24(6):765–774.
  • El-Sherbeny TMS, Mousa AM, El-Sayed ESR. in press. Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi J Biol Sci.
  • Eman A, Abdel-Megeed A, Suliman AMA, Sadik MW, Sholkamy EN. 2013. Biodegradation of glyphosate by fungal strains isolated from herbicides polluted-soils in Riyadh area. Int J Curr Microbiol App Sci 2(8):359–381.
  • Erguven GO. 2018. Comparison of some soil fungi in bioremediation of herbicide acetochlor under agitated culture media. Bull Environ Contam Toxicol 100(4):570–575.
  • Esparza-Naranjo SB, da Silva GF, Duque-Castaño DC, Araújo WL, Peres CK, Boroski M, Bonugli-Santos RC. 2021. Potential for the biodegradation of atrazine using leaf litter fungi from a subtropical protection area. Curr Microbiol 78(1):358–368.
  • Fauriah R, Amin N, Daud ID, Harsanti ES. 2021. The potential of endophytic fungi as biodegradation of chlorpyrifos in shallots. IOP Conf Ser Earth Environ Sci 807(3):032058.
  • Felse PA, Shah V, Chan J, Rao KJ, Gross RA. 2007. Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme Microb Tech 40(2):316–323.
  • Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y. 2017. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol 47(8):782–788.
  • Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X. 2014. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biolo Rev 28(2–3):36–55.
  • Gopal M, Gupta A, Arunachalam V, Magu SP. 2007. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresour Technol 98(16):3154–3158.
  • Goswami S, Vig K, Singh DK. 2009. Biodegradation of alpha and beta endosulfan by Aspergillus sydoni. Chemosphere 75(7):883–888.
  • Gul MM, Ahmad KS. 2020. Assessment of methyl 2-({[(4,6-dimethoxypyrimidin-2-yl) carbamoyl] sulfamoyl} methyl) benzoate through biotic and abiotic degradation modes. Open Chem 18(1):314–324.
  • Hamad MTMH. 2020. Biodegradation of diazinon by fungal strain Apergillus niger MK640786 using response surface methodology. Environ Technol Innov 18:100691.
  • Hasan HAH. 1999. Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44(1):77–84.
  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. A Insworth and Bisby’s dictionary of the fungi. Wallingford: CAB International.
  • He YH, Shen DS, Fang CR, Zhu YM. 2006. Rapid biodegradation of metsulfuron-methyl by a soil fungus in pure cultures and soil. World J Microbiol Biotechnol 22(10):1095–1104.
  • Henn C, Monteiro DA, Boscolo M, Da Silva R, Gomes E. 2020. Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains. BMC Microbiol 20(1):1–12.
  • Herrera-Gallardo BE, Guzmán‐Gil R, Colín‐Luna JA, García‐Martínez JC, León‐Santiesteban HH, González‐Brambila OM, González‐Brambila MM. 2021. Atrazine biodegradation in soil by Aspergillus niger. Can J Chem Eng 99(4):932–946.
  • Hock OG, Jeen CL, Rong CH, Kee WK, Shing WL. 2020. Isolation of atrazine-tolerant fungi from soil. Curr Top Toxicol 16:113–118.
  • Hu K, Torán J, López-García E, Barbieri MV, Postigo C, de Alda ML, Caminal G, Sarrà M, Blánquez P. 2020. Fungal bioremediation of diuron-contaminated waters: evaluation of its degradation and the effect of amendable factors on its removal in a trickle-bed reactor under non-sterile conditions. Sci Total Environ 743:140628.
  • Huang Y, Lin Z, Zhang W, Pang S, Bhatt P, Rene ER, Kumar AJ, Chen S. 2020. New insights into the microbial degradation of D-cyphenothrin in contaminated water/soil environments. Microorganisms 8(4):473.
  • Hung R, Lee S, Bennett JW. 2015. Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405.
  • Hussain S, Arshad M, Saleem M, Khalid A. 2007. Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 18 (6):731–740.
  • Hussaini SS, Shaker M, Iqbal MA. 2013. Isolation of fungal isolates for degradation of selected pesticides. Bull Env Pharmacol Life Sci 2(4):50–53.
  • Husson O. 2013. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362(1–2):389–417.
  • Jacobsen CS, Hjelmsø MH. 2014. Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20.
  • Jain R, Garg V, Yadav D. 2014. In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegradation 25(3):437–446.
  • Jain R, Garg V. 2013. Enzymatic degradation of monocrotophos by extracellular fungal OP hydrolases. Appl Biochem Biotechnol 171(6):1473–1486.
  • Jaiswal S, Bara JK, Soni R, Shrivastava K. 2017. Bioremediation of chlorpyrifos contaminated soil by microorganism. Int J Agric Environ Biotechnol 2(4):1624–1630.
  • Javaid MK, Ashiq M, Tahir M. 2016. Potential of biological agents in decontamination of agricultural soil. Scientifica 2016:1598325.
  • Jayashree R, Vasudevan N. 2007. Effect of tween 80 added to the soil on the degradation of endosulfan by Pseudomonas aeruginosa. Int J Environ Sci Technol 4(2):203–210.
  • Katayama A, Matsumura F. 1993. Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12(6):1059–1065.
  • Kaur P, Balomajumder C. 2020a. Bioremediation process optimization and effective reclamation of mixed carbamate-contaminated soil by newly isolated Acremonium sp. Chemosphere 249:125982.
  • Kaur P, Balomajumder C. 2020b. Effective mycoremediation coupled with bioaugmentation studies: an advanced study on newly isolated Aspergillus sp. in type-II pyrethroid-contaminated soil. Environ Pollut 261:114073.
  • Keller S. 1991. Arthropod-pathogenic entomophthorales of Switzerland. II. Erynia, Eryniopsis, Neozygites, Zoophthora and Tarichium. Sydowia 43:39–122.
  • Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I. 2019. Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191(9):1–11.
  • Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Ravji TR, Natarajaseenivasan K. 2009. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces 73(2):250–256.
  • Klimek M, Lejczak B, Kafarski P, Forlani G. 2001. Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest Manag Sci 57(9):815–821.
  • Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D. 2008. Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57(6):359–369.
  • Krzyśko-Łupicka T, Orlik A. 1997. The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 34(12):2601–2605.
  • Krzyśko-Lupicka T, Strof W, Kubś K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P. 1997. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48(4):549–552.
  • Kulshrestha G, Kumari A. 2011. Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory enriched red agricultural soil. Biol Fertil Soils 47(2):219–225.
  • Kumar A, Bisht S, Joshi VD, Dhewa T. 2011. Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093.
  • Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, et al. 2021. Microbial biosurfactant: a new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants 10(9):1472.
  • Kumar M, Gupta SK, Garg SK, Kumar A. 2006. Biodegradation of hexachlorocyclohexane-isomers in contaminated soils. Soil Biol Biochem 38(8):2318–2327.
  • Kunanbayev K, Churkinа G, Rukavitsina I, Filippova N, Utebayev M. 2019. Potential attractiveness of soil fungus Trichoderma inhamatum for biodegradation of the glyphosate herbicide. J Ecol Eng 20(11):240–245.
  • Lamar RT, White RB. 2001. Mycoremediation: commercial status and recent developments. In: Magar VS, von Fahnestock MF, Leeson A, editors. Proceedings sixth international symposium on in situ and on-site bioremediation. Battelle Pr, San Diego, p263–278.
  • Li J, Zhang W, Lin Z, Huang Y, Bhatt P, Chen S. 2021. Emerging strategies for the bioremediation of the phenylurea herbicide diuron. Front Microbiol 12:686509.
  • Li JL, Chen BH. 2009. Surfactant-mediated biodegradation of polycyclic aroamatic hydrocarbons. Materials 2(1):76–94.
  • Li K, Xing B, Torello W. 2005. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environ Pollut 134(2):187–194.
  • Li Y, Wang H, Wang W, Yang L, Zu Y. 2013b. Ectomycorrhizal influence on particle size, surface structure, mineral crystallinity, functional groups, and elemental composition of soil colloids from different soil origins. Sci World J 2013:698752.
  • Li YH, Jiang Y, Wang WJ, Zhang BY. 2013a. Effect of organic and inorganic carbon on extracellular enzyme activity of acid phosphatase and proteases in three kinds of fungal hyphae. Bull Bot Res 33(4):404–409.
  • Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH. 2005. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53(19):7415–7420.
  • Liu YH, Chung YC, Xiong Y. 2001. Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67(8):3746–3749.
  • Ma Y, Zhai S, Mao SY, Sun SL, Wang Y, Liu ZH, Dai YJ, Yuan S. 2014. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648. J Environ Sci Health B (9)49:661–670.
  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. 2016. Effects of pesticides on environment. In: Hakeem K, Akhtar M, Abdullah S, editors. Plant, soil and microbes. Cham: Springer, p253–269.
  • Marschner P, Kandeler E, Marschner B. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35(3):453–461.
  • Medo J, Hricáková N, Maková J, Medová J, Omelka R, Javoreková S. 2020. Effects of sulfonylurea herbicides chlorsulfuron and sulfosulfuron on enzymatic activities and microbial communities in two agricultural soils. Environ Sci Pollut Res Int 27(33):41265–41278.
  • Meena R, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma M, Yadav G, Jhariya M, Jangir C, et al. 2020. Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34.
  • Mehrotra S, Sandhir R, Chandra D. 2004. Degradation of xenobiotics and bioremediation. In: Singh DP, Dwivedi SK, editors. Environmental microbiology and biotechnology. New Age International (P) Limited, New Delhi, p59–74.
  • Miller RM, Bartha R. 1989. Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol 55(2):269–274.
  • Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S. 2020. Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere 259:127419.
  • Mohapatra D, Rath SK, Mohapatra PK. 2018. Bioremediation of insecticides by white-rot fungi and its environmental relevance. In: Prasad R, editor. Mycoremediation and environmental sustainability-fungal biology. Cham: Springer, p181–212.
  • Mohapatra D, Rath SK, Mohapatra PK. 2021. Evaluating a preparation of malathion‐tolerant Aspergillus niger MRU01 for accelerated removal of four organophosphorus insecticides. J Chem Technol Biotechnol 96(6):1603–1610.
  • Mohapatra PK. 2006. Environmental biotechnology. New Delhi: IK Publ.
  • Mohapatra PK, Patra S, Samantaray PK, Mohanty RC. 2003. Effect of the pyrethroid insecticide cypermethrin on photosynthetic pigments of the cyanobacterium Anabaena doliolum Bhar. Pol J Environ Stud 12(2):207–212.
  • Moorman T, Cowan J, Arthur E, Coats J. 2001. Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol Fertil Soils (6)33:541–545.
  • Mukherjee I, Gopal M. 1996. Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57(1–4):145–151.
  • Mukherjee I, Mittal A. 2005. Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum. Bull Environ Contam Toxicol 75(5):1034–1040.
  • Mulbry WW, Karns JS. 1989. Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl Environ Microbiol 55(2):289–293.
  • Muneer MA, Huang X, Hou W, Zhang Y, Cai Y, Munir MZ, Wu L, Zheng C. 2021. Response of fungal diversity, community composition, and functions to nutrients management in red soil. JoF 7(7):554.
  • Nasution L, Bakti D. 2018. Identification of fungi originated from soil polluted by dichloro diphenyl trichloroethane (DDT). IOP Conf Ser Earth Environ Sci 205(1):012021.
  • Nguyen NK, Dörfler U, Welzl G, Munch JC, Schroll R, Suhadolc M. 2018. Large variation in glyphosate mineralization in 21 different agricultural soils explained by soil properties. Sci Total Environ 627:544–552.
  • Nykiel-Szymańska J, Bernat P, Słaba M. 2018. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol Environ Saf 162:1–9.
  • Nykiel-Szymańska J, Bernat P, Słaba M. 2020. Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pestic Biochem Physiol 163:216–226.
  • Odukkathil G, Vasudevan N. 2013. Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12(4):421–444.
  • Odukkathil G, Vasudevan N. 2016. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. J Environ Manage 165:72–80.
  • Oliveira BR, Penetra A, Cardoso VV, Benoliel MJ, Crespo MB, Samson RA, Pereira VJ. 2015. Biodegradation of pesticides using fungi species found in the aquatic environment. Environ Sci Pollut Res Int 22(15):11781–11791.
  • Omar SA. 1998. Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation 9(5):327–336.
  • Otzen DE. 2017. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim Biophys Acta Biomembr 1859(4):639–649.
  • Pinedo-Rivilla C, Aleu J, Collado IG. 2009. Pollutants biodegradation by fungi. COC 13(12):1194–1214.
  • Pinton R, Varanini Z, Nannipieri P. 2007. The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, Florida.
  • Pizzul L, del Pilar Castillo M, Stenström J. 2009. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20(6):751–759.
  • Plaza C, Polo A, Brunetti G, Garcia-Gil J, Orazio V. 2003. Soil fulvic acid properties as a means to assess the use of pigamendment. Soil Tillage Res 74(2):179–190.
  • Pointing SB. 2001. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1–2):20–33.
  • Prasad R. 2017. Mycoremediation and environmental sustainability. Springer Nature Singapore Pte Ltd., Singapore.
  • Prosen H, Fingler S, Zupančič-Kralj L, Drevenkar V. 2007. Partitioning of selected environmental pollutants into organic matter as determined by solid-phase micro extraction. Chemosphere 66(8):1580–1589.
  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64(5):397–402.
  • Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I. 2017. Biodegradation of aldrin and dieldrin by the white-rot fungus Pleurotus ostreatus. Curr Microbiol 74(3):320–324.
  • Purnomo AS, Sariwati A, Kamei I. 2020. Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 6(6):e04027.
  • Purohit J, Chattopadhyay A, Biswas MK, Singh NK. 2018. Mycoremediation of agricultural soil: bioprospection for sustainable development. In: Prasad R, editor. Mycoremediation and environmental sustainability-fungal biology. Cham: Springer, p91–120.
  • Raffa CM, Chiampo F. 2021. Bioremediation of agricultural soils polluted with pesticides: a review. Bioengineering 8(7):92.
  • Raimondo EE, Saez JM, Aparicio JD, Fuentes MS, Benimeli CS. 2020. Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: effective scaling-up from microcosms to mesocosms. J Environ Manage 276:111309.
  • Rangasamy K, Athiappan M, Devarajan N, Parray JA. 2017. Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathog 105:153–165.
  • Reid BJ, Jones KC, Semple KT. 2000. Bioavailability of persistent organic pollutants in soils and sediments perspective on mechanisms, consequences and assessment. Environ Pollut 108(1):103–112.
  • Robichaud K, Stewart K, Labrecque M, Hijri M, Cherewyk J, Amyot M. 2019. An ecological microsystem to treat waste oil contaminated soil: using phytoremediation assisted by fungi and local compost, on a mixed-contaminant site, in a cold climate. Sci Total Environ 672:732–742.
  • Rocha WSD, Regitano JB, Alleoni LRF, Tornisielo VL. 2002. Sorption of imazaquin in soils with positive balance of charges. Chemosphere 49(3):263–270.
  • Rodrigues IVP, Borges KRA, Custódio Neto da Silva MA, Soares Brandão Nascimento MDD, Dos Santos J, Santana Azevedo A, Bezerra GFDB. 2020. Diversity of soil filamentous fungi influenced by marine environment in São Luís, Maranhão, Brazil. Sci World J 2020:1–6.
  • Rufino RD, Sarubbo LA, Campos-Takaki GM. 2007. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23(5):729–734.
  • Russo F, Ceci A, Pinzari F, Siciliano A, Guida M, Malusà E, Tartanus M, Miszczak A, Maggi O, Persiani AM. 2019. Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: potential of two autochthonous saprotrophic fungal strains. App Environ Microbiol 85(21):e01720-19.
  • Sabarwal A, Kumar K, Singh RP. 2018. Hazardous effects of chemical pesticides on human health-cancer and other associated disorders. Environ Toxicol Pharmacol 63:103–114.
  • Said-Pullicino D, Gigliotti G, Vella A. 2004. Environmental fate of triasulfuron in soils amended with municipal waste compost. J Environ Qual 33(5):1743–1751.
  • Saikia N, Gopal M. 2004. Biodegradation of beta-cyfluthrin by fungi. J Agric Food Chem 52(5):1220–1223.
  • Sailaja KK, Satyaprasad K. 2006. Degradation of glyphosate in soil and its effect on fungal population. J Environ Sci Eng 48(3):189–190.
  • Samantarai PK. 2006. Combination effects of nutrients and pyrethroid insecticide cypermethrin on growth and biochemical composition of the cyanobacterium Anabaena doliolum Bhar. Dissertation. Utkal University, Bhubaneswar, India.
  • Sanyal D, Kulshrestha G. 2003. Degradation of metolachlor in soil inoculated with a mixed fungal culture. Biol Fertil Soils 38(4):253–256.
  • Sanyal D, Kulshrestha G. 2004. Degradation of metolachlor in crude extract of Aspergillus flavus. J Environ Sci Health B 39(4):653–664.
  • Sarubbo LA, Farias CB, Campos-Takaki GM. 2007. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol (1)54:68–73.
  • Sena HH, Sanches MA, Rocha DFS, Segundo Filho WOP, de Souza ÉS, de Souza JVB. 2018. Production of biosurfactants by soil fungi isolated from the Amazon forest. Int J Microbiol 2018:1–8.
  • Senesi N. 1992. Binding mechanisms of pesticides to soil humic substances. Sci Total Environ 123–124:63–76.
  • Seo DC, DeLaune RD. 2010. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment. Sci Total Environ 408(17):3623–3631.
  • Shareef K, Shaw G. 2008. Sorption kinetics of 2,4-D and carbaryl in selected agricultural soils of northern Iraq: application of a dual-rate model. Chemosphere 72(1):8–15.
  • Sharma S, Banerjee K, Choudhury PP. 2012. Degradation of chlorimuron-ethyl by Aspergillus niger isolated from agricultural soil. FEMS Microbiol Lett 337(1):18–24.
  • Silambarasan S, Abraham J. 2013a. Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224(1):1–11.
  • Silambarasan S, Abraham J. 2013b. Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLOS One 8(10):e77170.
  • Sing NN, Zulkharnain A, Roslan HA, Assim Z, Husaini A. 2014. Bioremediation of PCP by Trichoderma and Cunninghamella strains isolated from sawdust. Braz Arch Biol Technol 57(6):811–820.
  • Singh DP, Dwivedi SK. 2004. Environmental microbiology and biotechnology. Kolkata: New Age.
  • Singh H. 2006. Mycoremediation fungal bioremediation. Hoboken: Wiley.
  • Singh SB, Lal SP, Pant S, Kulshrestha G. 2008. Degradation of atrazine by an acclimatized soil fungal isolate. J Environ Sci Health B 43(1):27–33.
  • Słaba M, Różalska S, Bernat P, Szewczyk R, Piątek MA, Długoński J. 2015. Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction. Bioresour Technol 197:404–409.
  • Słaba M, Szewczyk R, Bernat P, Długoński J. 2009. Simultaneous toxic action of zinc and alachlor resulted in enhancement of zinc uptake by the filamentous fungus Paecilomyces marquandii. Sci Total Environ 407(13):4127–4133.
  • Sondhia S, Waseem U, Varma RK. 2013. Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere 93(9):2140–2147.
  • Song NH, Chen L, Yang H. 2008. Effect of dissolved organic matter on mobility and activation of chlorotuluron in soil and wheat. Geoderma 146(1–2):344–352.
  • Spinelli V, Ceci A, Dal Bosco C, Gentili A, Persiani AM. 2021. Glyphosate-eating fungi: study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it. Microorganisms 9(11):2179.
  • Srinivasulu M, Rangaswamy V. 2013. Influence of insecticides alone and in combination with fungicides on enzyme activities in soils. Int J Environ Sci Technol (2)10:341–350.
  • Strong PJ, Burgess JE. 2008. Fungal and enzymatic remediation of a wine lees and five wine-related distillery wastewaters. Bioresour Technol 99(14):6134–6142.
  • Sun J, Yuan X, Li Y, Wang X, Chen J. 2019. The pathway of 2,2-dichlorovinyl dimethyl phosphate (DDVP) degradation by Trichoderma atroviride strain T23 and characterization of a paraoxonase-like enzyme. Appl Microbiol Biotechnol 103(21–22):8947–8962.
  • Supriya G, Dileep SK. 2009. Biodegradation of α and β endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation 20:199–207.
  • Szewczyk R, Soboń A, Słaba M, Długoński J. 2015. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J Hazard Mater 291:52–64.
  • Thanomsub B, Watcharachaipong T, Chotelersak K, Arunrattiyakorn P, Nitoda T, Kanzaki H. 2004. Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol 96(3):588–592.
  • Thibault GT, Elliott NW. 1979. Accelerating the biological clean up of hazardous materials spills. Proceedings oil and hazards materials. Spills: prevention-control-cleanup recovery-disposal.
  • Thirugnanam J, Senthilkumar R. 2016. Degradation of pesticide by using geofungi from Thanjavur district. IJSRM Human 4 (3):225–230.
  • Tigini V, Prigione V, Toro SD, Fava F, Varese GC. 2009. Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Fact 8:5.
  • Vazquez M, Bianchinotti MV. 2013. Isolation of metsulfuron methyl degrading fungi from agricultural soils in Argentina. Phyton (1)82:113–118.
  • Vidhya Lakshmi C, Mohit K, Sunil K. 2008. Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeter Biodegr 62(2):204–209.
  • Wang W, Li Y, Wang H, Zu Y. 2014. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids. PLOS One 9(11):e111740.
  • Wanner U, Fuhr F, Burauel P. 2005. Influence of the amendment of corn straw on the degradation behaviour of the fungicide dithianon in soil. Environ Pollut 133(1):63–70.
  • WHO. 2005. Recommended classification of pesticides by hazard and guidelines to classification 2004. Geneva: International Program on Chemical Safety, IOMC, WHO.
  • Worrall F, Fernandez-Perez M, Johnson A, Flores-Cesperedes F, Gonzalez-Pradas E. 2001. Limitations on the role of incorporated organic matter in reducing pesticide leaching. J Contam Hydrol 49(3–4):241–262.
  • Wu M, Xu Y, Ding W, Li Y, Xu H. 2016. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Appl Microbiol Biotechnol 100(16):7249–7261.
  • Xiao P, Mori T, Kamei I, Kondo R. 2011. Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314(2):140–146.
  • Yadav M, Srivastva N, Shukla AK, Singh RS, Upadhyay SN, Dubey SK. 2015. Efficacy of Aspergillus sp. for degradation of chlorpyrifos in batch and continuous aerated packed bed bioreactors. Appl Biochem Biotechnol 175(1):16–24.
  • Yadav U, Choudhury PP. 2014. Biodegradation of sulfosulphuron in agricultural soil by Trichoderma sp. Lett Appl Microbiol 59(5):479–486.
  • Zhan H, Feng Y, Fan X, Chen S. 2018. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102(12):5033–5043.
  • Zhang C, Tao Y, Li S, Ke T, Wang P, Wei S, Chen L. 2020. Bioremediation of cadmium-trichlorfon co-contaminated soil by Indian mustard (Brassica juncea) associated with the trichlorfon-degrading microbe Aspergillus sydowii: related physiological responses and soil enzyme activities. Ecotoxicol Environ Saf 188:109756.
  • Zhang Y, Zhang W, Li J, Pang S, Mishra S, Bhatt P, Zeng D, Chen S. 2021. Emerging technologies for degradation of dichlorvos: a review. IJERPH 18(11):5789.
  • Zhao J, Chi Y, Xu Y, Jia D, Yao K. 2016. Co-metabolic degradation of β-cypermethrin and 3-phenoxybenzoic acid by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4. PLOS One 11(11):e0166796.
  • Zhao MA, Gu H, Zhang CJ, Jeong IH, Kim JH, Zhu YZ. 2020. Metabolism of insecticide diazinon by Cunninghamella elegans ATCC36112. RSC Adv 10(33):19659–19668.
  • Zhu Y, Li J, Yao K, Zhao N, Zhou K, Hu X, Zou L, Han X, Liu A, Liu S. 2016. Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation. Appl Microbiol Biotechnol 100(22):9773–9786.
  • Zhu YZ, Keum YS, Yang L, Lee H, Park H, Kim JH. 2010. Metabolism of a fungicide mepanipyrim by soil fungus Cunninghamella elegans ATCC36112. J Agric Food Chem 58(23):12379–11234.
  • Žifčáková L, Dobiášová P, Kolářová Z, Koukol O, Baldrian P. 2011. Enzyme activities of fungi associated with Picea abies needles. Fungal Ecol 4(6):427–436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.