255
Views
3
CrossRef citations to date
0
Altmetric
Articles

Tungsten Dissolution from Hutti Goldmine Overburden by Aspergillus niger

, , , &
Pages 496-501 | Received 09 Oct 2021, Accepted 28 Jan 2022, Published online: 13 Feb 2022

References

  • Amiri F, Yaghmaei S, Mousavi SM. 2011b. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour Technol 102(2):1567–1573.
  • Amiri F, Yaghmaei S, Mousavi SM, Sheibani S. 2011a. Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger. Hydrometallurgy 109(1–2):65–71.
  • Behera SK, Mulaba-Bafubiandi AF. 2015. Advances in microbial leaching processes for nickel extraction from lateritic minerals – a review. Korean J Chem Eng 32(8):1447–1454.
  • Behera SK, Panda PP, Saini SK, Pradhan N, Sukla LB, Mishra BK. 2013. Recovery of nickel from chromite overburden, Sukinda using Aspergillus niger supplemented with manganese. Korean J Chem Eng 30(2):392–399.
  • Biswas S, Dey R, Mukherjee S, Banerjee PC. 2013. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger. Appl Biochem Biotechnol 170(7):1547–1559.
  • Blazevic A, Albu M, Mitsche S, Rittmann SKMR, Habler G, Milojevic T. 2019. Biotransformation of scheelite CaWO4 by the extreme thermoacidophile Metallosphaera sedula: tungsten–microbial interface. Front Microbiol 10:1492.
  • Bosecker K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3–4):591–604.
  • Carvalho RAGD, Cruz MC, Goncalves MC, Moura MM, Neves O. 1990. Bioleaching of tungsten ores. Hydrometallurgy 24(2):263–267.
  • Davey TRA, inventor; The University of Melbourne, Victoria, assignee. 1990, March 20. Method of extracting tungsten values from tungsten containing ores. United States Patent US 4,910,000.
  • European Commission 2017. List of Critical Raw Materials for the EU. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions., European Commission, Brussels, Belgium: COM(2017) 490 final.
  • Gadd GM. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92.
  • Gaur RPS. 2006. Modern hydrometallurgical production methods for tungsten. JOM 58:45–49.
  • Groudev SN, Groudeva VI. 1986. Biological leaching of aluminum from clays. Biotechnol Bioeng Symp 16:91–99.
  • Indian Minerals Yearbook. 2019. Part-II: metals and alloys, tungsten. 58th ed. Indian Bureau of Mines, Ministry of Mines, Government of India.
  • Isildar A, Van-Hullebusch ED, Lenz M, Du-Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker MA, Kuchta K. 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)–a review. J Hazard Mater 362:467–481.
  • Jain N, Sharma DK. 2004. Biohydrometallurgy for non-sulfidic minerals—a review. Geomicrobiol J 21(3)135–144.
  • Kalpakli AO, Ilhan S, Kahruman C, Yusufoglu I. 2012. Dissolution behavior of calcium tungstate in oxalic acid solutions. Hydrometallurgy 121–124:7–15.
  • Le L, Tang J, Ryan D, Valix M. 2006. Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism. Miner Eng 19(12):1259–1265.
  • Lin JC, Lin JY, Lee SL, inventors; National Science Council, Taipei, assignee. 1995, January 24. Process for recovering tungsten carbide from cemented tungsten carbide scraps by selective electrolysis. United States patent US 5,384, 016.
  • Mineral Commodity Summaries. 2021. Tungsten. Reston, Virginia: U.S. Department of the Interior, U.S. Geological Survey.
  • Mulligan CN, Kamali M, Gibbs BF. 2004. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J Hazard Mater 110(1–3):77–84.
  • Nasab MH, Noaparast M, Abdollahi H, Amoozegar MA. 2020. Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by Pseudomonas putida, Pseudomonas koreensis, Penicillium bilaji and Aspergillus niger. Hydrometallurgy, 193:105309.
  • Natarajan KA. 1992. Bioprocessing for enhanced gold recovery. Miner Process Extr Metall Rev 8(1–4):143–153.
  • Pattanaik A, Sukla LB, Pradhan D, Samal DPK. 2020. Microbial mechanism of metal sulfide dissolution. Mater Today Proc 30:326–331.
  • Premchand. 1996. Processing of low grade tungsten ore concentrates by hydrometallurgical route with particular reference to India. Bull Mater Sci 19(2):295–312.
  • Rao DV, Shivannavar CT, Gaddad SM. 2002. Bioleaching of copper from chalcopyrite ore by fungi. Indian J Exp Biol 40(3):319–324.
  • Rao NK. 1996. Beneficiation of tungsten ores in India: a review. Bull Mater Sci 19(2):201–265.
  • Ruijter GJG, K ubicek CP, Visser J. 2002. Production of organic acids by fungi. In: Osiewacz, HD, editor. Industrial Applications. The mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Vol. 10. Berlin, Heidelberg: Springer.
  • Saleh DK, Abdollahi H, Noaparast M, Nosratabad AF, Tuovinen OH. 2019. Dissolution of Al from metakaolin with carboxylic acids produced by Aspergillus niger, Penicillium bilaji, Pseudomonas putida, and Pseudomonas koreensis. Hydrometallurgy 186:235–243.
  • Sohn HY, Wadsworth ME. 1979. Rate process of extractive metallurgy. New York, US: Springer.
  • Srinivas K, Sreenivas T, Natarajan R, Padmanabhan NPH. 2000. Studies on the recovery of tungsten from a composite wolframite–scheelite concentrate. Hydrometallurgy 58(1):43–50.
  • Tkaczyk AH, Bartl A, Amato A, Lapkovskis V, Petranikova M. 2018. Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements. J Phys D Appl Phys 51(20):203001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.