242
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization of Halophilic Inulinase Producing Strains of Bacillus and Klebsiella Species Isolated From the Salt Mines of Pakistan

, , , &
Pages 591-596 | Received 18 Apr 2021, Accepted 14 Mar 2022, Published online: 27 Mar 2022

References

  • Ali N, Ullah N, Qasim M, Rahman H, Khan SN, Sadiq A, Adnan M. 2016. Molecular characterization and growth optimization of halo-tolerant protease producing Bacillus subtilis strain BLK-1.5 isolated from salt mines of Karak, Pakistan. Extremophiles 20(4):395–402.
  • Allais J, Hoyos-Lopez G, Baratti J. 1987. Characterization and properties of an inulinase from a thermophilic bacteria. Carbohyd Polym 7(4):277–290.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215(3):403–410.
  • Amoozegar M, Malekzadeh F, Malik KA. 2003. Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Meth 52(3):353–359.
  • Amoozegar MA, Schumann P, Hajighasemi M, Fatemi AZ, Karbalaei-Heidari HR. 2008. Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int J Syst Evol Micr 58(5):1159–1163.
  • Bangash A, Ahmed I, Abbas S, Kudo T, Shahzad A, Fujiwara T, Ohkuma M. 2015. Kushneria pakistanensis sp. nov., a novel moderately halophilic bacterium isolated from rhizosphere of a plant (Saccharum spontaneum) growing in salt mines of the Karak area in Pakistan. Antonie Van Leeuwenhoek. 107(4):991–1000. doi:https://doi.org/10.1007/s10482-015-0391-9.
  • Chen G-Q, Jiang X-R. 2018. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100.
  • Cheng T, Ismail N, Kamaruding N, Saidin J, Danish-Daniel MJBR. 2020. Industrial enzymes-producing marine bacteria from marine resources. Biotechnol Rep 27:e00482.
  • Corrado I, Petrillo C, Isticato R, Casillo A, Corsaro MM, Sannia G, Pezzella C. 2021. The power of two: an artificial microbial consortium for the conversion of inulin into polyhydroxyalkanoates. Int J Biol Macromol 189:494–502.
  • Danilova I, Sharipova M. 2020. The practical potential of Bacilli and their enzymes for industrial production. Front Microbiol 11:1782.
  • Das D, Bhat M R, Selvaraj R. 2019. Review of inulinase production using solid-state fermentation. Ann Microbiol. 69(3):201–209. doi:https://doi.org/10.1007/s13213-019-1436-5.
  • Enache M, Kamekura M. 2010. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 47:46–59.
  • Faruqi SH. 1983. Special features of the geology of Makarwal coal fields. Proceedings of the National Seminar on Development of Mineral Resources, Peshawar, Pakistan; p. 21–24.
  • Hingole SS, Anupama PP. 2016. Isolation of halotolerant Plant growth promoting Klebsiella pneumoniae from Tuppa, Nanded, Maharashtra. International Journal of Innovative Biological Research. 5(1):5–9.
  • Huang X, Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Res 9(9):868–877.
  • Ivanova Viara, Gavrailov Simeon, Pashkoulova Veronica. 2017. Characterisаtion of exo-inulinase concentrates from newly isolated thermophilic Bacillus strains- Bacillus sp. SG113 and Bacillus sp. SG115. Journal of Bioscience and Biotechnology. 6(3):169–178.
  • Jeza S, Maseko S, Lin J. 2018. Purification and characterization of exo-inulinase from Paenibacillus sp. d9 strain. Protein J 37(1):70–81.
  • Jiang L, Wu Q, Xu Q, Zhu L, Huang H. 2017. Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene. Sci Rep 7(1):7940.
  • Khan IU, Saqib M, Habib N, Xiao M, Ullah S, Irum S, Ahmed I, Li W-J. 2021. Study of bacterial diversity from saline environments (salt mines) of Pakistan and their applications at regional level. In Microbial communities and their interactions in the extreme environment. Springer, Singapore; p. 65–86.
  • Kiplimo D, Mugweru J, Kituyi S, Kipnyargis A, Mwirichia R. 2019. Diversity of esterase and lipase producing haloalkaliphilic bacteria from Lake Magadi in Kenya. J Basic Microbiol. 59(12):1173–1184. doi:https://doi.org/10.1002/jobm.201900353.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549.
  • Li A-X, Guo L-Z, Fu Q, Lu W-D. 2011. A simple and rapid plate assay for screening of inulin-degrading microorganisms using Lugol’s iodine solution. Afr J Biotechnol 10:9518–9521.
  • Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P. 2016. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci Rep. 6(1)doi:https://doi.org/10.1038/srep26710.
  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A. 2010. Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981.
  • Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD. 1999. Recent developments in microbial inulinases. ABAB 81(1):35–52.
  • Park J, Bae J, You D, Kim B, Yun J. 1999. Production of inulooligosaccharides from inulin by a novel endoinulinase from Xanthomonas sp. Biotechnol Lett 21(12):1043–1046.
  • Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK. 2017. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res. 24(31):24419–24437. doi:https://doi.org/10.1007/s11356-017-0033-z.
  • Qureshi JA, Malik KA. 1990. Evidence for a plasmid conferring salt-tolerance in the plant-root associated, diazotrophKlebsiella sp. NIAB-I. Biotechnol Lett. 12(10):783–788. doi:https://doi.org/10.1007/BF01024740.
  • Ramapriya R, Thirumurugan A, Sathishkumar T, Manimaran DR. 2018. Partial purification and characterization of exoinulinase produced from Bacillus sp. J. Genet. Eng. Biotechnol. 16(2):363–367. doi:https://doi.org/10.1016/j.jgeb.2018.03.001.
  • Rohban R, Amoozegar MA, Ventosa A. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36(3):333–340.
  • Roohi A, Ahmed I, Paek J, Sin Y, Abbas S, Jamil M, Chang YH. 2014. Bacillus pakistanensis sp. nov., a halotolerant bacterium isolated from salt mines of the Karak Area in Pakistan. Anton Leeuw 105(6):1163–1172.
  • Samad MYA, Razak CNA, Salleh AB, Yunus WZW, Ampon K, Basri M. 1989. A plate assay for primary screening of lipase activity. J Microbiol Meth 9(1):51–56.
  • Sim K, Cox MJ, Wopereis H, Martin R, Knol J, Li MS, Cookson WO, Moffatt MF, Kroll JS. 2012. Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing. PLOS One 7(3):e32543.
  • Sneath PH, Mair NS, Sharpe ME, Holt JG. 1986. Bergey's manual of systematic bacteriology. Vol. 2. Baltimore (MD): Williams & Wilkins.
  • Sun L-H, Wang X-D, Dai J-Y, Xiu Z-L. 2009. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82(5):847–852.
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680.
  • Vandamme EJ, Derycke DG. 1983. Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176.
  • Vullo DL, Coto CE, Siñeriz F. 1991. Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of Vernonia herbacea (Vell Rusby). Appl Environ Microbiol. 57(8):2392–2394. doi:https://doi.org/10.1128/aem.57.8.2392-2394.1991.
  • Yousefi-Mokri M, Sharafi A, Rezaei S, Sadeghian-Abadi S, Imanparast S, Mogharabi-Manzari M, Amanzadeh Y, Faramarzi M. 2019. Enzymatic hydrolysis of inulin by an immobilized extremophilic inulinase from the halophile bacterium Alkalibacillus filiformis. Carbohydr Res 483:107746.
  • Zhou J, Lu Q, Peng M, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Huang Z. 2015. Cold-active and NaCl-tolerant exo-inulinase from a cold-adapted Arthrobacter sp. MN8 and its potential for use in the production of fructose at low temperatures. J Biosci Bioeng 119(3):267–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.