420
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Fungal Calcium Carbonate Mineralization as a Microbial Approach for Concrete Self-Healing

, & ORCID Icon
Pages 631-636 | Received 14 Nov 2021, Accepted 27 Mar 2022, Published online: 10 Apr 2022

References

  • Achal V, Mukherjee A, Reddy MS. 2011. Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol 38(9):1229–1234.
  • Ahmad A, Rautaray D, Sastry M. 2004. Biogenic calcium carbonate: calcite crystals of variable morphology by the reaction of aqueous Ca2+ ions with fungi. Adv Funct Mater 14(11):1075–1080.
  • Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizzo JG, Bullen HA, Hoehler TM, Barton HA. 2010. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J 27(5):444–454.
  • Bhina MR, Salim M, Masroor M. 2019. An overview on fungi as self-healing agent in biomineralization of calcite. Int Res J Eng Technol 6:2980–2989.
  • Bindschedler S, Cailleau G, Verrecchia E. 2016. Role of fungi in the biomineralization of calcite. Minerals 6(2):41.
  • Bossio A, Lignola GP, Fabbrocino F, Monetta T, Prota A, Bellucci F, Manfredi G. 2017. Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks. Struct Concr 18(1):104–117.
  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. 2007. Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411.
  • Castanier S, Le Métayer-Levrel G, Perthuisot JP. 1999. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23.
  • Cheng L, Cord-Ruwisch R. 2012. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72.
  • Chou CW, Seagren EA, Aydilek AH, Lai M. 2011. Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189.
  • Daba GM, Elkhateeb WA, Thomas PW. 2018. This era of biotechnological tools: an insight into endophytic mycobiota. Egypt Pharm J 17 (3):121.
  • Daba GM, Elkhateeb W, ELDien AN, Fadl E, Elhagrasi A, Fayad W, Wen TC. 2020. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas 21(6):2437–2445.
  • Daba GM, Mostafa FA, Elkhateeb WA. 2021. The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool. Bioresour Bioprocess 8(1):1–17.
  • De Muynck W, Debrouwer D, De Belie N, Verstraete W. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res 38(7):1005–1014.
  • Decho AW. 2010. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol Eng 36(2):137–144.
  • DeJong J, Soga K, Kavazanjian E, Burns S, Van Paassen L, Al Qabany A, Aydilek A, Bang S, Burbank M, Caslake LF. 2014. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. In: Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013. Westminster: Ice Publishing, p143–157.
  • Dhami NK, Reddy MS, Mukherjee A. 2013. Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314.
  • Dias MA, Lacerda IC, Pimentel PF, De Castro HF, Rosa CA. 2002. Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34 (1):46–50.
  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W. 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367.
  • Dry C. 1994. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct 3(2):118–123.
  • Dupraz C, Visscher PT, Baumgartner L, Reid R. 2004. Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas. Sedimentology 51(4):745–765.
  • Edvardsen C. 1999. Water permeability and autogenous healing of cracks in concrete. In: Dhir, RK, Jones, RM, editors. Innovation in Concrete Structures: Design and Construction. London: Thomas Telford Publishing, p473–487.
  • El-Hagrassi A, Daba G, Elkateeb W, Ahmed E, El-Dein AN, Fayad W, Shaheen M, Shehata R, El-Manawaty M, Wen TC. 2020. In vitro bioactive potential and chemical analysis of the n-hexane extract of the medicinal mushroom, Cordyceps militaris. Malaysian J Microbiol 2020:40–48.
  • Elkhateeb WA, Daba GM. 2019. Myrothecium as promising model for biotechnological applications, potentials and challenges. Biomed J Sci Tech Res 16 (3):12126–12131.
  • Fang C, Kumari D, Zhu X, Achal V. 2018. Role of fungal-mediated mineralization in biocementation of sand and its improved compressive strength. Int Biodeterior Biodegradation 133:216–220.
  • Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW. 2000. Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17(4):305–318.
  • Gautam B. 2018. Bacteria based self healing concrete–a bacterial approach. Constr Build Mater (2018): 57–61.
  • Ghali A, Gayed RB. 2018. Punching shear strength of slabs and influence of low reinforcement ratio. ACI Struct J 115:1815–1816.
  • Gharieb MM, Sayer JA, Gadd GM. 1998. Solubilization of natural gypsum (CaSO42H2O) and formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol Res 102(7):825–830.
  • Harshali J, Mitali S, Neha A, Pragati B. 2016. Bio concrete and bacteria-based self-healing concrete. IJRET 5(5):95–99.
  • Hassoun MN, Al-Manaseer A. 2020. Structural Concrete: Theory and Design. New York: John Wiley & Sons.
  • Hou W, Lian B, Zhang X. 2011. CO2 mineralization induced by fungal nitrate assimilation. Bioresour Technol 102(2):1562–1566.
  • Huang H, Ye G. 2015. Self-healing of cracks in cement paste affected by additional Ca2+ ions in the healing agent. J Intelligent Mater Syst Struct 26 (3):309–320.
  • Jin C, Yu R, Shui Z. 2018. Fungi: a neglected candidate for the application of self-healing concrete. Front Built Environ 4(62):1–8.
  • Jonkers HM. 2011. Bacteria-based self-healing concrete. Heron 56:1–122.
  • Jonkers HM. 2007. Self healing concrete: a biological approach. In: Zwaag, S, editor. Self healing materials. Dordrecht: Springer, p195–204.
  • Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36(2):230–235.
  • Kang C, Zhongxian J. 2012. Evaluation of autogenous healing ability of cementitious composites. Dissertation, Nagoya University, p1–7.
  • Krajewska B. 2018. Urease-aided calcium carbonate mineralization for engineering applications: a review. J Adv Res 13:59–67.
  • Krishnapriya S, Venkatesh Babu DL, G PA. 2015. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res 174:48–55.
  • Kumari D, Qian XY, Pan X, Achal V, Li Q, Gadd GM. 2016. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94:79–108.
  • Li Q, Csetenyi L, Gadd GM. 2014. Biomineralization of metal carbonates by Neurospora crassa. Environ Sci Technol 48 (24):14409–14416.
  • Li Q, Csetenyi L, Paton GI, Gadd GM. 2015. CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 17 (8):3082–3097.
  • Luo J, Chen X, Crump J, Zhou H, Davies DG, Zhou G, Zhang N, Jin C. 2018. Interactions of fungi with concrete: significant importance for bio-based self-healing concrete. Constr Build Mater 164:275–285.
  • Magan N. 2007. Fungi in extreme environments. The Mycota 4:85–103.
  • Mamo G, Mattiasson B. 2019. Alkaliphiles: the emerging biological tools enhancing concrete durability. In: Mamo, G, Mattiasson, B, editors. Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology, Vol. 172. Cham: Springer, p293–342.
  • Martuscelli C, Soares C, Camões A, Lima N. 2020. Potential of fungi for concrete repair. Procedia Manuf 46:180–185.
  • Menon RR, Luo J, Chen X, Zhou H, Liu Z, Zhou G, Zhang N, Jin C. 2019. Screening of fungi for potential application of self-healing concrete. Sci Rep 9:1–12.
  • Nama P, Jain A, Srivastava R, Bhatia Y. 2015. Study on causes of cracks & its preventive measures in concrete structures. Int J Eng Res Appl 5:119–123.
  • Neville AM. 1996. Properties of Concrete. Upper Saddle River, NJ: Pearson Higher Education.
  • Nosouhian F, Mostofinejad D, Hasheminejad H. 2016. Concrete durability improvement in a sulfate environment using bacteria. J Mater Civ Eng 28(1):04015064.
  • Obst M, Dynes JJ, Lawrence JR, Swerhone GD, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock AP. 2009. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochim Cosmochim Acta 73(14):4180–4198.
  • Oggerin M, Tornos F, Rodriguez N, Pascual L, Amils R. 2016. Fungal iron biomineralization in Rio Tinto. Minerals 6 (2):37–48.
  • Pal S, Mohanty I, Panda I. 2021. Self-healing conventional concrete using bacteria. In: Das, B, Barbhuiya, S, Gupta, R, Saha, P, editors. Recent Developments in Sustainable Infrastructure (Springer), Lecture Notes in Civil Engineering, Vol. 75. Singapore: Springer, p441–451.
  • Pasquale V, Fiore S, Hlayem D, Lettino A, Huertas FJ, Chianese E, Dumontet S. 2019. Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. Int Biodeterior Biodegrad 140:57–66.
  • Povedano-Priego C, Martín-Sánchez I, Jroundi F, Sánchez-Castro I, Merroun ML. 2017. Fungal biomineralization of lead phosphates on the surface of lead metal. Minerals Eng 106:46–54.
  • Qian C, Zhou H, Wang K. 2019. Factors affecting morphology of microbially induced calcium carbonate. J Microbiol Exp 7 (2):101–114.
  • Ramachandran SK, Ramakrishnan V, Bang SS. 2001. Remediation of concrete using micro-organisms. ACI Mater J 98:3–9.
  • Rautaray D, Ahmad A, Sastry M. 2003. Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. J Am Chem Soc 125(48):14656–14657.
  • Rautaray D, Ahmad A, Sastry M. 2004. Biological synthesis of metal carbonate minerals using fungi and actinomycetes. J Mater Chem 14(14):2333–2340.
  • Reeburgh WS. 2007. Oceanic methane biogeochemistry. Chem Rev 107(2):486–513.
  • Riding R. 2000. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214.
  • Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez-Munoz MT. 2003. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193.
  • Roodman DM, Lenssen NK, Peterson JA. 1995. A building revolution: how ecology and health concerns are transforming construction. Washington, DC: Worldwatch Institute.
  • Ruan S, Qiu J, Weng Y, Yang Y, Yang EH, Chu J, Unluer C. 2019. The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cem Concr Res 115:176–188.
  • Sangadji S, Schlangen E. 2013. Mimicking bone healing process to self repair concrete structure novel approach using porous network concrete. Procedia Eng 54:315–326.
  • Sayer JA, Kierans M, Gadd GM. 1997. Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154(1):29–35.
  • Seifan M, Samani AK, Berenjian A. 2016. Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100(6):2591–2602.
  • Sheir DH, Amer O, Elkhateeb WA, Daba GM. 2020. Elucidation of myco-deterioration affecting calcareous construction materials of the Egyptian architectural heritage. Boreal Environ Res 25:27–56.
  • Sidiq A, Gravina R, Giustozzi F. 2019. Is concrete healing really efficient? A review. Constr Build Mater 205:257–273.
  • Sisomphon K, Copuroglu O, Koenders E. 2012. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem Concr Compos 34(4):566–574.
  • Stanaszek-Tomal E, Kozak A. 2017. Mineral and organic coatings modified nano-TiO2 addition as elements of sustainable building. In: Hager, I, editor. Energy Efficient, Sustainable Building Materials and Products Kraków, Polska: Wydawnictwo PK, p 89–117.
  • Van Wylick A, Monclaro AV, Elsacker E, Vandelook S, Rahier H, De Laet L, Cannella D, Peeters E. 2021. A review on the potential of filamentous fungi for microbial self-healing of concrete. Fungal Biol Biotechnol 8(1):12.
  • Verrecchia EP. 2000. Fungi and sediments. In: Riding, RE, Awramik, SM, editors. Microbial Sediments. Berlin: Springer-Verlag.
  • Vinoth T, Rahimunissa A, Manikandeswari S, Valavan E, Vadivel P, Thangam D. 2016. Causes and remedies on concrete cracks-a review. IJEMR 6:550–551.
  • Waghmode MS, Gunjal AB, Bhujbal NN, Patil NN, Nawani NN. 2019. Eco-friendly construction. In Koc, G, Christiansen, B, editors. Reusable and Sustainable Building Materials in Modern Architecture. Hershey, PA: IGI Global, p80–92.
  • Wang J, Ersan YC, Boon N, De Belie N. 2016. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 100(7):2993–3007.
  • Wang JY, De Belie N, Verstraete W. 2012. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39(4):567–577.
  • Zhang X, Zhang X, Gu S, Pan L, Sun H, Gong E, Zhu Z, Wen T, Daba GM, Elkhateeb WA. 2021. Structure analysis and antioxidant activity of polysaccharide-iron (III) from Cordyceps militaris mycelia. Int J Biol Macromol 178:170–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.