106
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamics of the Galionella spp. and Leptothrix spp. Communities of Polluted Mine Drainage Water in Slovinky and Markušovce (Slovakia)

, , , , , , & show all
Pages 597-605 | Received 16 Sep 2021, Accepted 22 Mar 2022, Published online: 04 May 2022

References

  • Abiriga D, Jenkins A, Alfsnes K, Vestgarden LS, Klempe H. 2021. Spatiotemporal and seasonal dynamics in the microbial communities of a landfill-leachate contaminated aquifer. FEMS Microbiol Ecol 97(7):fiab086.
  • Bae MJ, Hong JK, Kim EJ. 2021. Evaluation of the impacts of abandoned mining areas: a case study with benthic macroinvertebrate assemblages. IJERPH 18(21):11132.
  • Bai XT, Wang J, Dong H, Chen JM, Ge Y. 2021. Relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site. J Soils Sediments 21(1):1–12.
  • Bajtoš P, Záhorová L. 2008. Monitoring of Environmental Impacts in the Hazardous Areas of Magnesite, Talc and Ore Deposits. Spišská Nová Ves: State Geological Institute of Dionýz Štúr, p68.
  • Banks D, Younger PL, Arnesen R-T, Iversen ER, Banks SB. 1997. Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32(3):157–174.
  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné J-C. 2006. Diversity of microorganisms in Fe-as-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72(1):551–556.
  • Burow K, Grawunder A, Harpke M, Pietschmann S, Ehrhardt R, Wagner L, Voigt K, Merten D, Buchel G, Kothe E. 2019. Microbiomes in an acidic rock-water cave system. FEMS Microbiol Lett 366(13):fnz167.
  • Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD. 2013. Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195(14):3260–3268.
  • Cheng C, Luo W, Wang Q, He L, Sheng X. 2020. Combined biochar and metal-immobilizing bacteria reduces edible tissue metal uptake in vegetables by increasing amorphous Fe oxides and abundance of Fe- and Mn-oxidising Leptothrix species. Ecotoxicol Environ Saf 206:111189.
  • Cullimore DR, McCann AE. 1978. The Identification, cultivation and control of iron bacteria in ground water. In: Skinner, FA, Shewan, JM, editors. Aquatic Microbiology. Ann Arbor, MI: Academic Press, p1–32.
  • Edwards KJ, Gihring TM, Banfield JF. 1999. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65(8):3627–3632.
  • Emerson D, Moyer CL. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63(12):4784–4792.
  • Emerson D, Moyer CL. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68(6):3085–3093.
  • Fabisch M, Freyer G, Johnson C, Buchel G, Akob D, Neu T, Kusel K. 2016. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. Geobiology 14(1):68–90.
  • Fleming EJ, Cetinić I, Chan CS, King DW, Emerson D. 2014. Ecological succession among iron-oxidizing bacteria. ISME J 8(4):804–815.
  • Fleming EJ, Woyke T, Donatello RA, Kuypers MMM, Sczyrba A, Littmann S, Emerson D. 2018. Insights into the fundamental physiology of the uncultured Fe-oxidizing bacterium Leptothrix ochracea. Appl Environ Microb 84:e02239-17.
  • Hallbeck L, Pedersen K. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. Microbiology 136(9):1675–1680.
  • Hanert HH. 2006. The genus Gallionella. In: Dworkin, M, Falkow, S, Rosenberg, E, Schleifer, KH, Stackebrandt, E, editors. The Prokaryotes. New York: Springer, p990–995.
  • Hedrich S, Schlömann M, Johnson DB. 2011. The iron-oxidizing proteobacteria. Microbiology 157(Pt 6):1551–1564.
  • Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič L, Kučerová G, Radková A, Sottník P, Vozár J. 2013. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Environ Sci Pollut Res 20(11):7627–7642.
  • Hiller E, Tóth R, Kučerová G, Jurkovič Ľ, Šottník P, Lalinská-Voleková B, Vozár J. 2016. Geochemistry of mine tailings from processing of siderite–Cu ores and mobility of selected metals and metalloids evaluated by a pot leaching experiment at the Slovinky impoundment, Eastern Slovakia. Mine Water Environ 35(4):447–464.
  • Hybská H, Samešová D. 2014. Water Treatment and Purification Processes. Zvolen: Technical Universtiy in Zvolen, p124.
  • Ibrahim UB, Kawo AH, Yusuf I, Yahaya S. 2021. Physicochemical and molecular characterization of heavy metal-tolerant bacteria isolated from soil of mining sites in Nigeria. J Genet Eng Biotechnol 19(1):152.
  • Johnson W, Carmichael MJ, McDonald W, Rose N, Pitchford J, Windelspecht M, Karatan E, Bräuer SL. 2012. Increased abundance of Gallionella spp., Leptothrix spp. and total bacteria in response to enhanced Mn and Fe concentrations in a disturbed southern Appalachian high elevation wetland. Geomicrob J 29(2):124–138.
  • Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD. 2007. Synchrony in aquatic microbial community dynamics. ISME J 1(1):38–47.
  • Kisková J, Perháčová Z, Vlčko L, Sedláková J, Kvasnová S, Pristaš P. 2018. The bacterial population of neutral mine drainage water of Elizabeth's Shaft (Slovinky, Slovakia)). Curr Microbiol 75(8):988–996.
  • Krawczyk-Bärsch E, Scheinost AC, Rossberg A, Müller K, Bok F, Hallbeck L, Lehrich J, Schmeide K. 2021. Uranium and neptunium retention mechanisms in Gallionella ferruginea/ferrihydrite systems for remediation purposes. Environ Sci Pollut Res Int 28(15):18342–18353.
  • Kučerová G, Ozdín D, Lalinska-Voleková B. 2013. Primary low-temperature delafossite (CuFeO2) from mine tailings Slovinky (Slovakia), Prague. Bull Mineral Petrol Natl Museum 21:78–83.
  • Kunoh T, Kunoh H, Takada J. 2015. Perspectives on the biogenesis of iron oxide complexes produced by Leptothrix, an iron-oxidizing bacterium and promising industrial applications for their functions. J Microbial Biochem Tech 7:419–426.
  • Li D, Li Z, Yu J, Cao N, Liu R, Yang M. 2010. Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl Environ Microbiol 76(21):7171–7180.
  • Lintnerová O, Šefčíková B. 2002. Uptake and release of metals and sulphates by oxyhydroxides in sulphide mining waste. Miner Slov 34:219–232.
  • Liu JL, Yao J, Lu C, Li H, Li ZF, Duran R, Sunahara G, Mihucz VG. 2019. Microbial activity and biodiversity responding to contamination of metal(loid) in heterogeneous nonferrous mining and smelting areas. Chemsphere 226:659–667.
  • Luthy RG. 1964. New concept for iron bacteria control in water wells. Water Well J 24:29–30.
  • Nordstrom DK. 2011. Sulfide mineral oxidation. In: Reitner, J, Thiel, V, editors. Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer, p856–858.
  • Pereira LB, Vicentini R, Ottoboni LM. 2014. Changes in the bacterial community of soil from a neutral mine drainage channel. PLoS One 9(5):e96605.
  • Petrák M, Kučerová G, Tóth R, Lalinská-Voleková B, Šottník P, Jurkovič Ľ, Vozár J, Hiller E. 2011. Mineralogical and geochemical evaluation of the material of the Markušovce tailings pond. Miner Slov 43:395–408.
  • Quan X, Zhang H, Liu H, Chen L, Li N. 2020. Remediation of nitrogen polluted water using Fe-C microelectrolysis and biofiltration under mixotrophic conditions. Chemosphere 257:127272.
  • Rao CG. 1970. Occurrence of iron bacteria in the tube well water supply of Howrah. Environ Health 12:273–290.
  • Salari Z, Kazemi MJ, Shirsalimian MS. 2020. Isolation and molecular identification of halophilic microorganisms from around Saghand uranium mine, Saghand desert, Iran. Geomicrobiol J 37(1):40–49.
  • Sasaki K, Lesbarreres D, Beaulieu CT, Watson G, Litzgus J. 2016. Effects of mining-altered environment on individual fitness of amphibians and reptiles. Ecosphere 7(6):e01360.
  • Singh VK, Singh AL, Singh R, Kumar A. 2018. Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. Environ Sustain 1(3):221–231.
  • Starkly RL. 1945. Precipitation of ferric hydrate by iron bacteria. Science 102:523–533.
  • Stephenson M. 1950. Bacterial Metabolism. New York: Longmann, Green & Co, p398.
  • Sun W, Xiao E, Kalin M, Krumins V, Dong Y, Ning Z, Liu T, Sun M, Zhao Y, Wu S, et al. 2016. Remediation of antimony-rich mine waters: assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. Environ Pollut 215:213–222.
  • Švorcová L. 1985. Cultivation and detection of iron and manganese bacteria in water. In: Sládeček, V, editor. Current Issues of Water Biology. Prague: Ministry of the Environment of the Czech Republic, p35–40.
  • Tóth R, Hiller E, Petrák M, Jurkovič Ľ, Šottník P, Vozár J, Peťková K. 2013. Tailings impoundments Markušovce and Slovinky: application of the methodology for evaluation of impoundment sediments from ore processing on the model impoundments. Miner Slov 43:395–408.
  • Tóthová L, Mogoňová E. 2000. Iron and manganese bacteria. Bratislava: Water Research Institute, Bratislava, p73.
  • Vlčko L, Mních Š. 2012. Monitoring of cyanobacteria, algae and filamentous bacteria in mining waters. Acta Facultatis Ecologiae 27:105–112.
  • Xiang L, Chan LC, Wong J. 2000. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere. 41(1-2):283–287. doi:https://doi.org/10.1016/S0045-6535(99)00422-1.
  • Zhao X, Huang J, Lu J, Sun Y. 2019. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol Environ Saf 170:218–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.