292
Views
1
CrossRef citations to date
0
Altmetric
Articles

Antibacterial and Antibiofilm Activity of Carboxymethyl Cellulose Stabilized Silver Nanoparticles Synthesized using Quercetin and Their Effects on Soil Respiration and Enzymes

ORCID Icon
Pages 679-688 | Received 24 Nov 2021, Accepted 11 Apr 2022, Published online: 01 May 2022

References

  • Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S. 2021. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol Environ Saf 213:112027.
  • Bragg PD, Rainnie DJ. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20(6):883–889.
  • Cao C, Huang J, Cai W-S, Yan C-N, Liu J-L, Jiang Y-D. 2017. Effects of silver nanoparticles on soil enzyme activity of different wetland plant soil systems. Soil Sediment Contamin 26(5):558–567.
  • Chandhirasekar K, Thendralmanikandan A, Thangavelu P, Nguyen B-S, Nguyen T-A, Sivashanmugan K, Nareshkumar A, Nguyen V-H. 2021. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater Lett 287:129265.
  • Dahl JA, Maddux BLS, Hutchison JE. 2007. Toward greener nanosynthesis. Chem Rev 107(6):2228–2269.
  • Erci F, Torlak E. 2019. Antimicrobial and antibiofilm activity of green synthesized silver nanoparticles by using aqueous leaf extract of Thymus serpyllum. Sakarya Univ J Sci 23(3):1–339.
  • Fu Q-L, Zhong C-J, Qing T, Du Z-Y, Li C-C, Fei J-J, Peijnenburg WJGM. 2021. Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L. Chemosphere 280:130863.
  • Garg D, Sarkar A, Chand P, Bansal P, Gola D, Sharma S, Khantwal S, Mehrotra R, Chauhan N, Bharti RK. 2020. Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications—a review. Prog Biomater 9(5):81–95.
  • Gee GW, Bauder JW. 1986. Particle‐size analysis. In: Methods of soil analysis: part 1 physical and mineralogical methods, Agronomy Monograph No. 9, 2nd Edition, American Society of Agronomy/Soil Science Society of America, Madison, WI, Vol. 5, p383–411.
  • Gottschalk F, Nowack B. 2011. The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155.
  • Gugino BK, Abawi GS, Idowu OJ, Schindelbeck RR, Smith LL, Thies JE, Wolfe DW, van Es HM. 2009. Cornell soil health assessment training manual. Cornell University College of Agriculture and Life Sciences. Ithaca, New York
  • Hebeish A, Shaheen T, El-Naggar ME. 2016. Solid state synthesis of starch-capped silver nanoparticles. Int J Biol Macromol 87:70–76.
  • Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE. 2010. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohyd Polym 82(3):933–941.
  • Hoffmann GG, Teicher K. 1961. A colorimetric technique for determining urease activity in soil. Z Pflanzenernaehr Dueng Bodenk 95(1):55–63.
  • Hooda H, Singh P, Bajpai S. 2020. Effect of quercitin impregnated silver nanoparticle on growth of some clinical pathogens. Mater Today 31:625–630.
  • Kim B, Park C-S, Murayama M, Hochella MF. 2010. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514.
  • Klute A. 1986. Water retention: laboratory methods. In: Klute A, editor. Methods of soil analysis: part 1—physical and mineralogical methods. 2nd ed. Madison, WI: American Society of Agronomy, Inc. Soil Science Society of America, Inc., p635–662.
  • Kumar SSD, Rajendran NK, Houreld NN, Abrahamse H. 2018. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 115:165–175.
  • Liu X, Wang J, Wu L, Zhang L, Si Y. 2021. Impacts of silver nanoparticles on enzymatic activities, nitrifying bacteria, and nitrogen transformation in soil amended with ammonium and nitrate. Pedosphere 31(6):934–943.
  • McLean EO. 1983. Soil pH and lime requirement. In: Methods of soil analysis: part 2 chemical and microbiological properties, American Society of Agronomy, Soil Science Society of America, Madison, WI, Vol. 9, p199–224.
  • Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ. 2016. Comprehensive assessment of soil health: the Cornell framework manual, Edition 3.1. Ithaca, NY: Cornell University.
  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. 2012. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8(6):916–924.
  • Nadtoka O, Kutsevol N, Naumenko A, Virych P. 2019. Photochemical synthesis and characterization of hydrogel–silver nanoparticle composites. Res Chem Intermed 45(8):4069–4080.
  • Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z. 2019. Green nanotechnology. In: Interface science and technology, Vol. 28. Elsevier, p145–198.
  • Nelson RE. 1983. Carbonate and gypsum. In: Methods of soil analysis: part 2 chemical and microbiological properties, American Society of Agronomy, Soil Science Society of America, Madison, WI, Vol. 9, p181–197.
  • Park S, Park HH, Ko Y-S, Lee SJ, Le TS, Woo K, Ko G. 2017. Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids. Sci Total Environ 609:289–296.
  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S. 2014. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33(1):115–125.
  • Popa M, Pradell T, Crespo D, Calderón-Moreno JM. 2007. Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A Physicochem Eng Aspects 303(3):184–190.
  • Prajitha N, Athira SS, Mohanan P v. 2019. Bio-interactions and risks of engineered nanoparticles. Environ Res 172:98–108.
  • Prema P, Thangapandiyan S, Immanuel G. 2017. CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydr Polym 158:141–148.
  • Rahmatpour S, Shirvani M, Mosaddeghi MR, Nourbakhsh F, Bazarganipour M. 2017. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 285:313–322.
  • Rhoades JD. 1982. Soluble salts. In: Methods of soil analysis: part 2, chemical and microbiological properties, American Society of Agronomy, Soil Science Society of America, Madison, WI, p167–179.
  • Samarajeewa AD, Velicogna JR, Schwertfeger DM, Jesmer AH, Princz JI, Subasinghe RM, Scroggins RP, Beaudette LA. 2019. Effect of silver nanoparticle contaminated biosolids on the soil microbial community. Nanoimpact 14:100157.
  • Shin Y-J, Kwak J i, An Y-J. 2012. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88(4):524–529.
  • Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru AK. 2013. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 36(4):407–415.
  • Skujins S. 1998. Handbook for ICP-AES (Varian-Vista). A short guide to vista series ICP-AES operation Varian Int AG, Zug, Version 1(0).
  • Su CH, Velusamy P, Kumar GV, Adhikary S, Pandian K, Anbu P. 2017. Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition. J Mol Struct 1128:718–723.
  • Sun W, Dou F, Li C, Ma X, Ma LQ. 2021. Impacts of metallic nanoparticles and transformed products on soil health. Crit Rev Environ Sci Technol 51(10):973–1002.
  • Thalmann A. 1968. Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258.
  • Thi Ngoc Dung T, Nang Nam V, Thi Nhan T, Ngoc TTB, Minh LQ, Nga BTT, Phan Le V, Viet Quang D. 2020. Silver nanoparticles as potential antiviral agents against African swine fever virus. Mater Res Express 6(12):1250g9.
  • Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. 2006. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341(12):2012–2018.
  • Wigginton NS, A de T, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R. 2010. Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168.
  • Wright AF, Bailey JS. 2001. Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Commun Soil Sci Plant Anal 32(19–20):3243–3258.
  • Wu J, Wang G, Vijver MG, Bosker T, Peijnenburg WJGM. 2020. Foliar versus root exposure of AgNPs to lettuce: phytotoxicity, antioxidant responses and internal translocation. Environ Pollut 261:114117.
  • Yang Y, Quensen J, Mathieu J, Wang Q, Wang J, Li M, Tiedje JM, Alvarez PJJ. 2014. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res 48:317–325.
  • Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. 2020. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 89:208–219.
  • Zaheer Z. 2012. Silver nanoparticles to self-assembled films: green synthesis and characterization. Colloids Surf B 90:48–52.
  • Zhang C, Hu Z, Deng B. 2016. Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.