73
Views
0
CrossRef citations to date
0
Altmetric
Articles

Differential Gene Expression and Bioinformatics Analysis of Copper Resistance-Related Gene afe_1948 from Acidithiobacillus sp. L1

, , , , &
Pages 213-226 | Received 13 Feb 2022, Accepted 14 Oct 2022, Published online: 04 Nov 2022

References

  • Almárcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA. 2014. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Res Microbiol 165(9):761–772.
  • Andreozzi S, Chakrabart A, Soh KC, Burgard A, Yang TH, Dien SV, Miskovic L, Hatzimanikatis V. 2016. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab Eng 35:148–159.
  • Bazzi W, Abou Fayad AG, Nasser A, Haraoui L-P, Dewachi O, Abou-Sitta G, Nguyen V-K, Abara A, Karah N, Landecker H, et al. 2020. Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front Microbiol 11:68.
  • Brookes PC, Mcgrath SP. 1984. Effect of metal toxicity on the size of the soil microbial biomass. Eur J Soil Sci 35(2):341–346.
  • Cabrera G, Gómez JM, Cantero D. 2005. Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Process Biochem 40(8):2683–2687.
  • Caguiat JJ, Watson AL, Summers AO. 1999. Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J Bacteriol 181(11):3462–3471.
  • Chen DD, Lin JQ, Che YY, Liu XM, Lin JQ. 2011. Construction of recombinant mercury resistant Acidithiobacillus caldus. Microbiol Res 166(7):515–520.
  • Chen JJ, Liu YL, Diep P, Mahadevan R. 2022. Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: progress and perspectives. J Hazard Mater 438:129456.
  • Chen MJ, Li YJ, Zhang L, Wang JY, Zheng CL, Zhang XF. 2015. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans. Curr Microbiol 70(2):290–297.
  • Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53(1):121–147.
  • Dekker L, Arsène-Ploetze F, Santini JM. 2016. Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol 167(3):234–239.
  • Delmar JA, Su CC, Yu EW. 2015. Heavy metal transport by the CusCFBA efflux system. Protein Sci 24(11):1720–1736.
  • Demergasso CS, Galleguillos PP, Escudero GL, Zepeda AV, Castillo D, Casamayor EO. 2005. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80(4):241–253.
  • Derakhshani A, F KK, Barzegari Banadkoki S, Shirazi FH, Barati M, Fereidouni M, Safarpour H. 2019. Optimization of induction parameters, structure quality assessment by ATR-FTIR and in silico characterization of expressed recombinant polcalcin in three different strains of Escherichia coli. Int J Biol Macromol 138:97–105.
  • Donovan RS, Robinson CW, Glick BR. 1996. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol Biot 16(3):145–154.
  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL. 2003. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149(Pt 8):1959–1970.
  • Einsfeldt K, Júnior JBS, Argondizzo APC, Medeiros MA, Alves TLM, Almeida RV, Larentis AL. 2011. Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine 29(41):7136–7143.
  • Fan DW, Sun JW, Liu CL, Wang SY, Han JG, Agathokleous E, Zhu YL. 2021. Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb. Sci Total Environ 783:147494.
  • Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The Proteomics Protocols Handbook. Springer Protocols Handbooks. Totowa, New Jersey: Humana Press. pp 571–607.
  • Gharieb MM, Gadd GM. 2004. Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. Biometals 17(2):183–188.
  • Giller KE, Witter E, Mcgrath SP. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414.
  • Hahn A, Stevanovic M, Mirus O, Lytvynenko I, Pos KM, Schleiff E. 2013. The outer membrane TolC-like channel HgdD is part of tripartite resistance-nodulation-cell division (RND) efflux systems conferring multiple-drug resistance in the cyanobacterium Anabaena sp. PCC7120. J Biol Chem 288(43):31192–31205.
  • Hullebusch EDV, Zandvoort MH, Lens PNL. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2(1):9–33.
  • Janso JE, Carter GT. 2010. Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76(13):4377–4386.
  • Jeannot K, Sobel ML, El Garch F, Poole K, Plesiat P. 2005. Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 187(15):5341–5346.
  • Kim JS, Song S, Lee M, Lee S, Lee K, Ha NC. 2016. Crystal structure of a soluble fragment of the membrane fusion protein HlyD in a type I secretion system of Gram-negative bacteria. Structure 24(3):477–485.
  • Koronakis V, Stanley P, Koronakis E, Hughes C. 1992. The HlyB/HlyD-dependent secretion of toxins by gram-negative bacteria. FEMS Microbiol Lett 105(1–3):45–53.
  • Leng FF, Li KY, Zhang XX, Li YQ, Zhu Y, Lu JF, Li HY. 2009. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy 98(3–4):235–240.
  • Leng FF, Wei QW, Wang YG, Jing YJ, Sun SC, Ma H, Wang YL, Ma JZ. 2017. Cloning and bioinformatics analysing of RND transporters family (rnd-1) in Acidithiobacillus ferrooxidans. Genomics Appl Biol 36(6):2410–2416.
  • Luo YL, Liu YD, Zhang CG, Luo HL, Guan H, Liao HH, Qiu GZ, Liu XD. 2008. Insights into two high homogenous genes involved in copper homeostasis in Acidithiobacillus ferrooxidans. Curr Microbiol 57(4):274–280.
  • Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY, Wong YS. 2003. The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci 164(1):51–60.
  • Martínez-Bussenius C, Navarro CA, Orellana L, Paradela A, Jerez CA. 2016. Global response of Acidithiobacillus ferrooxidans ATCC 53993 to high concentrations of copper: a quantitative proteomics approach. J Proteomics 145:37–45.
  • Mealman TD. 2012. Metal Transfer and Protein-Protein Interactions in the CusCFBA Cu(I)/Ag(I) Efflux System of E. coli. Tucson, Arizona: The University of Arizona.
  • Mealman TD, Zhou M, Affandi T, Chacón KN, Aranguren ME, Blackburn NJ, Wysocki VH, McEvoy MM. 2012. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Biochemistry 51(34):6767–6775.
  • Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. 1999. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43(2):415–417.
  • Moore CM, Helmann JD. 2005. Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8(2):188–195.
  • Navarro CA, Orellana LH, Mauriaca C, Jerez CA. 2009. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75(19):6102–6109.
  • Nies DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339.
  • Nikaido H. 2018. RND transporters in the living world. Res Microbiol 169(7–8):363–371.
  • Nong QY, Yuan K, Li Z, Chen P, Huang YS, Hu LG, Jiang J, Luan TG, Chen BW. 2019. Bacterial resistance to lead: chemical basis and environmental relevance. J Environ Sci 85:46–55.
  • Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA. 2010. Life in blue: copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol Adv 28(6):839–848.
  • Pennanen T, Frostegard A, Fritze H, Baath E. 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62(2):420–428.
  • Petersen TN, Brunak S, Von HG, Nielsen H. 2011. SIGNALP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786.
  • Ramos-Zúñiga J, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. 2019. Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. J Proteomics 198:132–144.
  • Rawlings DE, Johnson DB. 2007. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153(Pt 2):315–324.
  • Rensing C, Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27(2–3):197–213.
  • Riggle PJ, Kumamoto CA. 2000. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182(17):4899–4905.
  • Saha N, Tomar RS. 2022. Copper inhibits protein maturation in the secretory pathway by targeting the Sec61 translocon in Saccharomyces cerevisiae. J Biol Chem 298(8):102170.
  • Schippers A, Jozsa P, Sand W. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62(9):3424–3431.
  • Silverman MP, Lundgren DG. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77(5):642–647.
  • Sodhi KK, Mishra LC, Singh CK, Kumar M. 2022. Perspective on the heavy metal pollution and recent remediation strategies. Curr Res Microbial Sci 3:100166.
  • Su C-C, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA, et al. 2009. Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 393(2):342–355.
  • Tao JM, Liu XD, Luo XY, Teng TK, Jiang CY, Drewniak L, Yang ZD, Yin HQ. 2021. An integrated insight into bioleaching performance of chalcopyrite mediated by microbial factors: functional types and biodiversity. Bioresour Technol 319:124219.
  • Valls M, Atrian S, Lorenzo VD, Fernandez LA. 2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18(6):661–665.
  • Vargas-Straube MJ, Beard S, Norambuena R, Paradela A, Vera M, Jerez CA. 2020. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur. J Proteomics 225:103874.
  • Watling HR. 2008. The bioleaching of nickel-copper sulfides. Hydrometallurgy 91(1–4):70–88.
  • Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, Nguyen LY, Shawar RM, Folger KR, Stover CK. 1999. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43(12):2975–2983.
  • White C, Gadd GM. 2000. Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett 183(2):313–318.
  • Wilmotte A, van der Auwera G, de Wachter R. 1993. Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317(1–2):96–100.
  • Wu HP, Yuan B. 2004. Isolation of Thiobacillus ferrooxidans and study on its characteristics. Min Metall 13(4):69–71.
  • Wu XL, Qiu GZ, Gao J, Ding JN, Kang J, Liu XX. 2007. Mutagenic breeding of silver-resistant Acidithiobacillus ferrooxidans and exploration of resistant mechanism. T Nonferr Metal Soc 17(2):412–417.
  • Yan L, Yin HH, Zhang S, Duan JG, Li YQ, Chen P, Li HY. 2010. Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans. Bioresour Technol 101(16):6572–6575.
  • Yao J, Xu WJ, Li HY. 2005. Transportation characterization of copper ion in adapted Thiobacillus ferrooxidans. Chinese J Nonferr Metals 15(12):2009–2015.
  • Yarzábal A, Duquesne K, Bonnefoy V. 2003. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur- and in ferrous iron media. Hydrometallurgy 71(1–2):107–114.
  • Ye J, Chen CH, Xia J, Fu SL, Yang YQ. 2002. Effect of temperature on the growth of recombinant E. coli and on the expression of recombinant protein. J East China Univ Sci Tech 28(4):364–367.
  • Ye JS, Yin H, Peng H. 2002. Advance on study of the resistance to heavy metal by microorganisms. Techniques Equip Environ Poll Cont 3(4):1–4.
  • Yu SJ, Yang YP, Deng YW. 2011. Research on the isolation and growth characteristics of Acidithiobacillus ferrooxidans. J Jiangxi Univ Sci Tech 32(5):1–4.
  • Zeng J, Geng MM, Liu YD, Xia LX, Liu JS, Qiu GZ. 2007. The sulfhydryl group of Cys138 of rusticyanin from Acidithiobacillus ferrooxidans is crucial for copper binding. Biochim Biophys Acta 1774(4):519–525.
  • Zhao XQ, Wang RC, Lu XC, Lu JJ, Li CX, Li J. 2013. Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans. Miner Eng 53:184–192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.