187
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of Fines Content in Silt-Sand Mixtures with Different Saturations on Microbial-Induced Calcium Carbonate Precipitation

ORCID Icon, ORCID Icon &
Pages 227-237 | Received 08 Mar 2022, Accepted 19 Oct 2022, Published online: 15 Nov 2022

References

  • Al-Thawadi S, Cord-Ruwisch R. 2012. Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. J Adv Sci Eng Res 2(1):12–26.
  • Al Qabany A, Soga K, Santamarina C. 2012. Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001.
  • Amin M, Zomorodian SMA, O'Kelly BC. 2017. Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation. Proc Inst Civil Eng Ground Improv 170(2):112–122.
  • Castro-Alonso MJ, Montañez-Hernandez LE, Sanchez-Muñoz MA, Macias Franco MR, Narayanasamy R, Balagurusamy N. 2019. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front Mater 6:126.
  • Chae SH, Chung H, Nam K. 2021. Evaluation of Microbially Induced Calcite Precipitation (MICP) methods on different soil types for wind erosion control. Environ Eng Res 26(1):123–128.
  • Cheng L, Cord-Ruwisch R, Shahin MA. 2013. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50(1):81–90.
  • Cheng L, Shahin MA, Mujah D. 2017. Influence of key environmental conditions on microbially induced cementation for soil stabilization. J Geotech Geoenviron Eng 143(1):04016083.
  • Choi SG, Chu J, Brown RC, Wang K, Wen Z. 2017. Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. ACS Sustainable Chem Eng 5(6):5183–5190.
  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu H-L. 2014. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9(2):277–285.
  • Consoli NC, Cruz RC, Floss MF, Festugato L. 2010. Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng. 136(5):759–763. doi:10.1061/(ASCE)GT.1943-5606.0000278.
  • Cui M-J, Zheng J-J, Zhang R-J, Lai H-J, Zhang J. 2017. Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech. 12(5):971–986.
  • Dawoud OM. 2016. The applicability of microbially induced calcite precipitation (MICP) for soil treatment. Cambridge: The University of Cambridge.
  • Day Robert W, Thevanayagam S. 1999. Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 125(11):1024–1027.
  • DeJong JT, Fritzges MB, Nüsslein K. 2006. Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng. 132(11):1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381).
  • Feng K, Montoya B. 2016. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142(1):04015057.
  • Ivanov V, Chu J. 2008. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7(2):139–153.
  • Ivanov V, Chu J, Stabnikov V. 2014. Iron-and calcium-based biogrouts for porous soils. Proc Inst Civil Eng Constr Mater 167(1):36–41.
  • Konstantinou C, Biscontin G, Jiang N-J, Soga K. 2021. Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. J Rock Mech Geotech Eng 13(3):579–592.
  • Landa-Marbán D, Tveit S, Kumar K, Gasda SE. 2021. Practical approaches to study microbially induced calcite precipitation at the field scale. Int J Greenhouse Gas Control 106:103256.
  • Lin H, Suleiman MT, Brown DG. 2020. Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP). Soils Found 60(4):944–961.
  • Lin H, Suleiman MT, Brown DG, Kavazanjian E Jr. 2016. Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng 142(2):04015066.
  • Liu L, Liu H, Xiao Y, Chu J, Xiao P, Wang Y. 2018. Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull Eng Geol Environ 77(4):1781–1791.
  • Mahawish A, Bouazza A, Gates WP. 2018. Improvement of coarse sand engineering properties by microbially induced calcite precipitation. Geomicrobiol J 35(10):887–897.
  • Mitchell JK, Santamarina JC. 2005. Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233.
  • Mujah D, Cheng L, Shahin MA. 2019. Microstructural and geomechanical study on biocemented sand for optimization of MICP process. J Mater Civ Eng 31(4):04019025.
  • Mujah D, Shahin M, Cheng L. 2016. Performance of biocemented sand under various environmental conditions. XVIII Brazilian Conference on Soil Mechanics and Geotechnical Engineering. The Sustainable Future of Brazil goes through our Minas COBRAMSEG,
  • Mujah D, Shahin MA, Cheng L, Karrech A. 2021. Experimental and analytical study on geomechanical behavior of biocemented sand. Int J Geomech 21(8):04021126.
  • Nafisi A, Montoya BM, Evans TM. 2020. Shear strength envelopes of biocemented sands with varying particle size and cementation level. J Geotech Geoenviron Eng 146(3):04020002.
  • Omoregie AI, Palombo EA, Ong DE, Nissom PM. 2019. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Constr. Build. Mater. 228:116828. doi:10.1016/j.conbuildmat.2019.116828.
  • Rahman MM, Lo S. 2008. The prediction of equivalent granular steady state line of loose sand with fines. Geomech Geoeng Int J 3(3):179–190.
  • Salgado R, Bandini P, Karim A. 2000. Shear strength and stiffness of silty sand. J Geotech Geoenviron Eng 126(5):451–462. doi:10.1061/(ASCE)1090-0241(2000)126:5(451).
  • Song C, Elsworth D, Zhi S, Wang C. 2021. The influence of particle morphology on microbially induced CaCO3 clogging in granular media. Mar Georesour Geotechnol 39(1):74–81.
  • Sun X, Miao L, Tong T, Wang C. 2018. Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification. J Mater Civ Eng 30(11):04018301.
  • Terzis D, Bernier-Latmani R, Laloui L. 2016. Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. Géotech Lett 6(1):50–57.
  • Thevanayagam S, Martin GR. 2002. Liquefaction in silty soils—screening and remediation issues. Soil Dyn. Earthquake Eng. 22(9-12):1035–1042. doi:10.1016/S0267-7261(02)00128-8.
  • Thevanayagam S, Shenthan T, Mohan S, Liang J. 2002. Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng. 128(10):849–859. doi:10.1061/(ASCE)1090-0241(2002)128:10(849).
  • Thevanayagam S. 1998. Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 124(6):479–491.
  • Thevanayagam S. 2001. Role of intergranular contacts on the mechanisms causing liquefaction and slope failures in silty sands. Annual project summary report (USGS Award Number: 01HQGR0032). Reston (VA): US Geological Survey, Department of Interior, USA.
  • Thevanayagam S, Kanagalingam T, Shenthan T. 2003, February. Intergrain friction, contact density, and cyclic resistance of sands. In Proc. of 2003 Pacific Conference on Earthquake Engineering, Christchurch, New Zealand.
  • Thevanayagam S, Kanagalingam T. 2005. Discussion: contribution of fines to the compressive strength of mixed soils. Géotechnique 55(8):627–628.
  • Van Paassen LA, Ghose R, Van Der Linden TJM, Van Der Star WRL, Van Loosdrecht MCM. 2010. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J Geotech Geoenviron Eng. 136(12):1721–1728. doi:10.1061/(ASCE)GT.1943-5606.0000382.
  • Van Paassen LA. 2009. Biogrout, ground improvement by microbial induced carbonate precipitation. https://repository.tudelft.nl/islandora/object/uuid%3A5f3384c4-33bd-4f2a-8641-7c665433b57b
  • Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MC. 2010. Potential soil reinforcement by biological denitrification. Ecol Eng. 36(2):168–175.
  • Whiffin VS, Van Paassen LA, Harkes MP. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24(5):417–423. doi:10.1080/01490450701436505.
  • Whiffin VS. 2004. Microbial CaCO3 precipitation for the production of biocement. Perth: Murdoch University.
  • Whitehead KA, Rogers D, Colligon J, Wright C, Verran J. 2006. Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloids Surf B Biointerfaces 51(1):44–53.
  • Whitehead KA, Verran J. 2006. The effect of surface topography on the retention of microorganisms. Food Bioprod Process 84(4):253–259.
  • Xiao P, Liu H, Xiao Y, Stuedlein AW, Evans TM. 2018. Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn Earthquake Eng 107:9–19.
  • Xiao Y, He X, Evans TM, Stuedlein AW, Liu H. 2019. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand. J Geotech Geoenviron Eng 145(9):04019048.
  • Xiao Y, Stuedlein AW, Ran J, Evans TM, Cheng L, Liu H, Van Paassen LA, Chu J. 2019. Effect of particle shape on strength and stiffness of biocemented glass beads. J Geotech Geoenviron Eng 145(11):06019016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.