178
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Unique Populations of Sulfur-Oxidizing Bacteria in Natural Cold Sulfur Springs in Slovakia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 315-324 | Received 07 Feb 2022, Accepted 04 Jan 2023, Published online: 18 Jan 2023

References

  • Albarracín VH, Galván FS, Farías ME. 2020. Extreme microbiology at Laguna Socompa: a high-altitude Andean lake (3570 m a.s.l.) in Salta, Argentina. In: Farías, M, editor. Microbial Ecosystems in Central Andes Extreme. Cham, Berlin: Springer.
  • Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Martinez-Cruz M, Marten de Moor J, Pieper DH, Chavarria M. 2019. Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica. Extremophiles 23(2):177–187.
  • Bajo I, Szabová A. 1976. Vihorlat – Popričný – vyhľadávací hydrogeologický prieskum. Záverečná správa s ocenením zásob podzemných vôd k 30.10.1974. Manuskript – archív ŠGÚDŠ. 1–188.
  • Bascó Z, Ďuďa R. 1988. Metallogenesis and ore formations of the Remetské Hámre ore field, Vihorlat Mts., Eastern Slovakia (in Slovak). Miner. Slovaca 20:193–220.
  • Behera BC, Singh SK, Patra M, Mishra RR, Sethi BK, Dutta SK, Thatoi HN. 2016. Partial Purification and characterisation of sulphur oxidase from Micrococcus sp. and Klebsiella sp. isolated from mangrove soils of Mahanadi River Delta, Odisha, India. ujmr 4(3):66–78.
  • Beijerinck MW. 1904. Phénomènes de réduction produits par les microbes. Arch Néerland Sci. Exact. Nat 9:131–157.
  • Boden R. 2017. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int J Syst Evol Microbiol 67(10):3919–3928.
  • Boyd ES, Hamilton TL, Havig JR, Skidmore ML, Shock EL. 2014. Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol 80(19):6146–6153.
  • Dul’tseva NM, Chernitsina SM, Zemskaya TI. 2012. Isolation of bacteria of the genus Variovorax from the Thioploca mats of lake Baikal. Microbiology 81(1):67–78.
  • Fenchel T, King GM, Blackburn TH. 2012. Aquatic sediments. In: Harris, T, editor. Bacterial Biochemistry: The Ecophysiology of Mineral Cycling. Boston: Academic Press/Elsevier, p121–142.
  • Franko O, Bodiš D, Gazda S, Michalíček M. 1979. Hydrogeologické vyhodnotenie Liptovskej kotliny z hľadiska výskytu minerálnych vôd. Manuskript – Archív ŠGÚDŠ :1–66.
  • Ghosh W, Dam B. 2009. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33(6):999–1043.
  • Hamilton TL, Jones DS, Schaperdoth I, Macalady JL. 2014. Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Front Microbiol 5:756.
  • Headd B, Engel AS. 2013. Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Appl Environ Microbiol 79(4):1171–1182.
  • Headd B, Engel AS. 2014. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs. Front Microbiol 5:473.
  • Hocheng H, Su C, Jadhav UU. 2014. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere 117:652–657. doi10.1016/j.chemosphere.2014.09.089
  • Huang X, Madan A. 1999. CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877.
  • Ihara H, Hori T, Aoyagi T, Takasaki M, Katayama Y. 2017. Sulfur-oxidizing bacteria mediate microbial community succession and element cycling in launched marine sediment. Front Microbiol 8:152.
  • Inagaki F, Takai K, Nealson KH, Horikoshi K. 2004. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54(Pt 5):1477–1482.
  • Ito T, Sugita K, Yumoto I, Nodasaka Y, Okabe S. 2005. Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. Int J Syst Evol Microbiol 55(Pt 3):1059–1064.
  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, et al. 2010. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5(5):e10433.
  • Kelly DP, Wood AN. 2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus Gen. nov. and Thermithiobacillus Gen. nov. Int J Syst Evol Microbiol 50:511–516.
  • Koch T, Dahl C. 2018. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J 12(10):2479–2491.
  • Krishnani KK, Kathiravan V, Natarajan M, Kailasam M, Pillai SM. 2010. Diversity of sulfur-oxidizing bacteria in greenwater system of coastal aquaculture. Appl Biochem Biotechnol 162(5):1225–1237.
  • Kumar S, Stecher G, Li M, Knyaz CH, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549.
  • Lazar I, Lazar I. 2010. Gel analyzer 2010a: freeware 1D gel electrophoresis image analysis software. http://www.gelanalyzer.com/.
  • Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. 2011. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol 13(3):758–774.
  • Magnuson E, Mykytczuk NCS, Pellerin A, Goordial J, Twine SM, Wing B, Foote SJ, Fulton K, Whyte LG. 2021. Thiomicrorhabdus streamers and sulfur cycling in perennial hypersaline cold springs in the Canadian high Arctic. Environ Microbiol 23(7):3384–3400.
  • Masuda S, Eda S, Ikeda S, Mitsui H, Minamisawa K. 2010. Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Appl Environ Microbiol 76(8):2402–2409.
  • Matejčeková E, Židek L. 1984. Fyzikálno-chemické rozbory minerálnych vôd na Slovensku. Manuskript – Archív ŠGÚDŠ. 1–45.
  • Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, Amann R, Meyerdierks A. 2017. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J 11(7):1545–1558.
  • Meyer B, Imhoff JF, Kuever J. 2007. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9(12):2957–2977.
  • Meziti A, Nikouli E, Hatt JK, Konstantinidis KT, Kormas KA. 2021. Time series metagenomic sampling of the Thermopyles, Greece, geothermal springs reveals stable microbial communities dominated by novel sulfur-oxidizing chemoautotrophs. Environ Microbiol 23(7):3710–3726.
  • Michalko J. 2016. Beginnings of the isotope research of mineral and thermal groundwaters of Slovakia. Slovak Geol Mag 16(2):27–40.
  • Mino S, Kudo H, Arai T, Sawabe T, Takai K, Nakagawa S. 2014. Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum. Int J Syst Evol Microbiol 64(Pt 9):3195–3201.
  • Moissl CH, Rudolph CH, Huber R. 2002. Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl Environ Microbiol 68(2):933–937.
  • Mori K, Suzuki K. 2008. Thiofaba tepidiphila gen. nov., sp. nov., a novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from a hot spring. Int J Syst Evol Microbiol 58(Pt 8):1885–1891.
  • Nguyen PM, Do PT, Pham YB, Doan TO, Nguyen XC, Lee WK, Nguyen DD, Vadiveloo A, Um M-J, Ngo HH. 2022. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Sci Total Environ 852:158203. doi10.1016/j.scitotenv.2022.158203
  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178(19):5636–5643.
  • Overmann J, Van Gemerden H. 2000. Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24(5):591–599.
  • Park SJ, Ghai R, Martin-Cuadrado AB, Rodriguez-Valera F, Jung MY, Kim JG, Rhee SK. 2012. Draft genome sequence of the sulfur-oxidizing bacterium "Candidatus Sulfurovum sediminum" AR, which belongs to the Epsilonproteobacteria. J Bacteriol 194(15):4128–4129.
  • Petri R, Podgorsek L, Imhoff JF. 2001. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197(2):171–178.
  • Plašienka D. 2018. Continuity and episodicity in the early Alpine tectonic evolution of the Western Carpathians: how large-scale processes are expressed by the organic architecture and rock record data. Tectonics 37(7):2029–2079. ():-.
  • Pokorna D, Zabranska J. 2015. Sulfur-oxidizing bacteria in environmental technology. Biotechnol Abv 33(6):1246–1259.
  • Pospiech A, Neumann B. 1995. A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11(6):217–218.
  • Rana K, Rana N, Singh B. 2020. Applications of sulfur oxidizing bacteria. In: Salwan, R, Sharma, V, editor. Physiological and biotechnological aspects of extremophiles. Boston: Academic Press/Elsevier, p131–136.
  • Rapant S, Vrana K, Bodiš D. 2011. Geochemical Atlas of Slovakia, Part I: Groundwater. Bratislava (SK): GSSR.
  • Rudolph CH, Moissl CH, Henneberger R, Huber R. 2004. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol Ecol 50(1):1–11.
  • Rudolph C, Wanner G, Huber R. 2001. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67(5):2336–2344.
  • Ryan MP, Pembroke JT, Adley CC. 2007. Ralstonia pickettii in environmental biotechnology: potential and applications. J Appl Microbiol 103(4):754–764.
  • Šalaga I, Šalagová V, Frličková M. 1995. Paleogén Žilinskej kotliny a východného okraja Súľovských vrchov – hydrogeologický prieskum. Manuskript – Archív ŠGÚDŠ :1–114.
  • Salman V, Bailey JV, Teske A. 2013. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie Van Leeuwenhoek 104(2):169–186.
  • Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27(3):379–423.
  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T. 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584.
  • Sriaporn CH, Campbell KA, Van Kranendonk MJ, Handley KM. 2021. Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs. Microbiome 9(1):135.
  • Swanner ED, Nell RM, Templeton AS. 2011. Ralstonia species mediate Fe-oxidation in circumneutral, metal-rich subsurface fluids of Henderson mine, CO. Chem Geol 284(3-4):339–350.
  • Tang K, Baskaran V, Nemati M. 2009. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94.
  • Tometzová D. 2017. The use of sulfur water of Slovakia for balneotourism. Conference: Mineral waters in the Carpathian basin, 13th international scientific conference at: Sfantu Gheorghe, Romania.
  • Tourova TP, Slobodova NV, Bumazhkin BK, Kolganova TV, Muyzer G, Sorokin DY. 2013. Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiol Ecol 84(2):280–289.
  • Trubitsyn IV, Belousova EV, Tutukina MN, Merkel AY, Dubinina GA, Grabovich MY. 2014. Expansion of ability of denitrification within the filamentous colorless sulfur bacteria of the genus Thiothrix. FEMS Microbiol Lett 358(1):72–80.
  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703.
  • www_1. n.d. Geofond registers: boreholes. Bratislava: State geological institute of Dionýz Štúr.
  • Žec B, Kaličiak M, Konečný V, Lexa J, Jacko S, Baňacký V, Karoli S, Potfaj M, Rakús M, Petro Ľ. 1997. Vyvsetlivky ku geologickej mape Vihorlatských a Humenských vrchov, 1:50000 GS SR, 254p.
  • Zwart G, Crump BC, Kamst-van Agterveld M, Hagen F, Han SK. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.