97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study of Copper Resistant Pseudomonas Strains Isolated from Soil in Sarcheshmeh Copper Mine, in Iran and Investigation of the Mechanisms Involved in Copper Resistance

Pages 582-589 | Received 01 Jan 2023, Accepted 12 May 2023, Published online: 01 Jun 2023

References

  • Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M. 2012. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 12:193.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215(3):403–410.
  • Barnali SC, Joshi SR. 2010. Pseudomonads: a versatile bacterial group exhibiting dual resistance to metals and antibiotics. Afr J Microbiol Res 4:2828–2835.
  • Caille O, Rossier C, Perron K. 2007. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 189(13):4561–4568.
  • Cha JS, Cooksey DA. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88(20):8915–8919.
  • Chihomvu P, Stegmann P, Pillay M. 2015. Characterization and structure prediction of partial length protein sequences of pcoA, pcoR and chrB genes from heavy metal resistant bacteria from the Klip River, South Africa. Int J Mol Sci 16(4):7352–7374.
  • Deepika KV, Raghuram M, Kariali E, Bramhachari PV. 2016. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicol Environ Saf 134:1–10.
  • Díaz A, Marrero J, Cabrera G, Coto O, Gómez GM. 2022. Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems. Biodegradation 33(1):33–43.
  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ. 2011. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut. 159(7):1749–1756.
  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791.
  • Filali BK, Taoufik J, Zeroual Y, Dzairi FZ, Talbi M, Blaghen M. 2000. Waste water bacterial isolates resistant to heavy metals and antibiotics. Curr Microbiol 41(3):151–156.
  • Gandhi VP, Priya A, Priya S, Daiya V, Kesari J, Prakash K, Kumar Jha A, Kumar K, Kumar N. 2015. Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India. Pollution 1(3):287–295.
  • Ghorbani E, Nowruzi B, Nezhadali M, Hekmat A. 2022. Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition. BMC Microbiol 22(1):58.
  • Gupta P, Diwan B. 2017. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71.
  • Hall T. 1999. Bio Edit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98.
  • Hong S, Candelone JP, Turetta C, Boutron CF. 1996. Changes in natural lead, copper, zinc and cadmium concentrations in central Greenland ice from 8250 to 149,100 years ago: their association with climatic changes and resultant variations of dominant source contributions. Earth Planet Sci Lett 143(1–4):233–244.
  • Issazadeh K, Jahanpour N, Pourghorbanali Raeisi G, Faekhondeh J. 2013. Heavy metals resistance by bacterial strains. Ann Biol Res 4(2):60–63.
  • Khan S, Mukherjee A, Chandrasekaran N. 2011. Silver nanoparticles tolerant bacteria from sewage environment. J Environ Sci (China). 23(2):346–352.
  • Lejon DP, Nowak V, Bouko S, Pascault N, Mougel C, Martins JM, Ranjard L. 2007. Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Microbiol Ecol 61(3):424–437.
  • Loewus FA. 1952. Improvement in Anthrone method for determination of carbohydrates. Anal Chem. 24(1):219–219.
  • Mathivanan K, Chandirika JU, Mathimani T, Rajaram R, Annadurai G, Yin H. 2021. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Ecotoxicol Environ Saf 208:111567.
  • Moore ER, Tindal BJ, Martin Dos Santos VA, Pieper DH, Ramos JL, Palleroni NJ. 2006. Nonmedical: Pseudomonas. Prokaryotes 6:646–703.
  • Oyetibo GO, Ilori MO, Adebusoye SA, Obayori OS, Amund OO. 2010. Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environ Monit Assess 168(1–4):305–314.
  • Planchon M, Jittawuttipoka T, Cassier-Chauvat C, Guyot F, Gelabert A, Benedetti MF, Chauvat F, Spalla O. 2013. Exopolysaccharides protect Synechocystis against the deleterious effects of titanium dioxide nanoparticles in natural and artificial waters. J Colloid Interface Sci 405:35–43.
  • Qureshi FM, Badar U, Ahmed N. 2001. Biosorption of copper by a bacterial biofilm on a flexible polyvinyl chloride conduit. Appl Environ Microbiol 67(9):4349–4352.
  • Rensing C, Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27(2–3):197–213.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA. 2000. A new Klebsiella planticola strain (cd-1) grows an aerobically at high cadmium concentrations and precipitates cadmium sulphide. Appl Environ Microbiol 66(7):3083–3087.
  • Solioz M, Stoyanov JV. 2003. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27(2–3):183–195.
  • Soltani-Nezhad S, Rabbani Khorasgani M, Emtiazi G, Yaghoobi MM, Shakeri S. 2014. Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance. World J Microbiol Biotechnol 30(3):809–817.
  • Spain A. 2003. Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739.
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680.
  • Ueshima M, Ginn BR, Haack EA, Szymanowski JE, Fein JB. 2008. Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim Cosmochim Acta 72(24):5885–5895.
  • Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.