119
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of Potent Phosphate-Solubilizing Bacteria Isolated from the Olive Tree Rhizosphere Grown on Phosphate Sludge and Their Effect on Common Bean Growth

, , , , , , & show all
Pages 605-617 | Received 22 Sep 2022, Accepted 24 May 2023, Published online: 03 Jun 2023

References

  • Aarab S, Ollero F, Megías M, Laglaoui A, Bakkali M, Arakrak A. 2013. Isolation and identification of potential phosphate solubilizing bacteria from the rhizosphere of Lupinus hirsutus L. in the North of Morocco. Moroccan J Biol 10:7–13.
  • Abbasi MK, Manzoor M. 2018. Biosolubilization of phosphorus from rock phosphate and other P fertilizers in response to phosphate solubilizing bacteria and poultry manure in a silt loam calcareous soil. J Plant Nutr Soil Sci 181(3):345–356.
  • Abd El-Rahman AF, Shaheen HA, Abd El-Aziz RM, Ibrahim DSS. 2019. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode Meloidogyne incognita. Egyptian J Biol Pest Control 29:41–52.
  • Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20.
  • Ait-Ouakrim EH, Chakhchar A, El Modafar C, Douira A, Amir S, Ibnsouda-Koraichi S, Belkadi B, Filali-Maltouf A. 2023. Valorization of Moroccan phosphate sludge through isolation and characterization of phosphate solubilizing bacteria and assessment of their growth promotion effect on Phaseolus vulgaris. Waste Biomass Valor 2023:2.
  • Akintokun AA, Akande GA, Akintokun PA. 2007. Solubilization of insoluble phosphate by organic acid-producing fungi isolated from Nigerian soil. Int J Soil Sci 2(4):301–307.
  • Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 8:971.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215(3):403–410.
  • Antil S, Kumar R, Pathak DV, Kumar A, Panwar A, Kumari A, Kumar V. 2021. On the potential of Bacillus aryabhattai KMT-4 against Meloidogyne javanica. Egypt J Biol Pest Control 31(1):67.
  • Anzuay MS, Ciancio M, Ludueña LM, Angelini JG, Barros G, Pastor N, Taurian T. 2017. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiol Res 199:98–109.
  • Arora NK, Verma M. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7(6):381.
  • Azaroual SE, Kasmi Y, Aasfar A, El Arroussi H, Zeroual Y, El Kadiri Y, Zrhidri A, Elfahime E, Sefiani A, Meftah Kadmiri I. 2022. Investigation of bacterial diversity using 16S rRNA sequencing and prediction of its functionalities in Moroccan phosphate mine ecosystem. Sci Rep 12(1):3741.
  • Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z. 2021. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res 252:126842.
  • Batool S, Iqbal A. 2019. Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var Galaxy 2013). Saudi J Biol Sci 26(7):1400–1410.
  • Ben Zineb A, Trabelsi D, Ayachi I, Barhoumi F, Aroca R, Mhamdi R. 2020. Inoculation with elite strains of phosphate-solubilizing bacteria enhances the effectiveness of fertilization with rock phosphates. Geomicrobiol J 37(1):22–30.
  • Benbrik B, Elabed A, El Modafar C, Douira A, Amir S, Filali-Maltouf A, El Abed S, El Gachtouli N, Mohammed I, Ibnsouda-Koraichi S. 2020. Reusing phosphate sludge enriched by phosphate solubilizing bacteria as biofertilizer: growth promotion of Zea Mays. Biocatal Agric Biotechnol 30:101825.
  • Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. 2019. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J 36(10):904–916.
  • Blanco-Vargas A, Rodríguez-Gacha LM, Sánchez-Castro N, Garzón-Jaramillo R, Pedroza-Camacho LD, Poutou-Piñales RA, Rivera-Hoyos CM, Díaz-Ariza LA, Pedroza-Rodríguez AM. 2020. Phosphate-solubilizing Pseudomonas sp, and Serratia sp, co-culture for Allium cepa L growth promotion. Heliyon 6(10):e05218.
  • Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, Rajkumar M. 2020. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521.
  • Burdass D, Grainger J, Hurst J. 2016. Basic Practical Microbiology: A Manual Society for General Microbiology. London: WC1N 2JU, UK.
  • Cao Y, Fu D, Liu T, Guo G, Hu Z. 2018. Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wetland. Water 10(2):195.
  • Cheba BA, Abdelzaher H. 2020. Chetoui olive cultivar rhizosphere: potential reservoir for exoenzymes and exopolysaccharides producing bacteria. J Pure Appl Microbiol 14(4):2569–2575.
  • Chen W, Kuo T. 1993. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21(9):2260.
  • Chliyeh M, Rhimini Y, Selmaoui K, Touhami AO, Filali-Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A. 2014. Comparative study of pathogenicity tests for Verticillium dahliae and Phytophthora palmivora causing wilt and decline of olive tree (Olea europaea L.). Int J Pure App Biosci 2:28–38.
  • Costa Júnior PSP, Cardoso FP, Martins AD, Teixeira Buttrós VH, Pasqual M, Dias DR, Schwan RF, Dória J. 2020. Endophytic bacteria of garlic roots promote growth of micropropagated meristems. Microbiol Res 241:126585.
  • Dandessa C, Bacha K. 2018. Review on role of phosphate solubilizing microorganisms in sustainable agriculture. Int J Curr Res Aca Rev 6(11):48–55.
  • de Bruijn FJ. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58(7):2180–2187.
  • Dede A, Güven K, Şahi N N. 2020. Isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb Pathog 143:104134.
  • Dwivedi M. 2020. Gluconobacter. Chapter. In: Beneficial microbes in agro-ecology. Cambridge: Academic Press. p521–544.
  • El Attar I, Taha K, El Bekkay B, El Khadir M, Thami Alami I, Aurag J. 2019. Screening of stress tolerant bacterial strains possessing interesting multi-plant growth promoting traits isolated from root nodules of Phaseolus vulgaris L. Biocatal Agric Biotechnol 20:101225.
  • El Maaloum S, Elabed A, Alaoui-Talibi ZE, Meddich A, Filali-Maltouf A, Douira A, Ibnsouda-Koraichi S, Amir S, El Modafar C. 2020. Effect of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria consortia associated with phospho-compost on phosphorus solubilization and growth of tomato seedlings (Solanum lycopersicum L. Commun Soil Sci Plant Anal 51(5):622–634.
  • Essalmani H, Lahlou H. 2003. Mécanismes de bioprotection des plantes de lentille par Rhizobium leguminosarum contre Fusarium oxysporum f. sp. lentis. C R Biol 326(12):1163–1173.
  • Fitriyanti D, Mubarik NR, Tjahjoleksono A. 2017. Characterization and Identification of Phosphate Solubilizing Bacteria Isolate GPC3.7 from Limestone Mining Region. IOP Conf Ser: Earth Environ Sci 58:012016.
  • Geetha K, Enkatesham EV, Amballa H, Hadraiah BB. 2014. Isolation, screening and characterization of plant growth promoting bacteria and their effect on Vigna Radita (L.) R. Wilczek. Int J Curr Microbiol Appl Sci 3:799–809.
  • Gilbert S, Xu J, Acosta K, Poulev A, Lebeis S, Lam E. 2018. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front Chem 6:265.
  • Gómez-Lama Cabanás C, Ruano-Rosa D, Legarda G, Pizarro-Tobías P, Valverde-Corredor A, Triviño JC, Roca A, Mercado-Blanco J. 2018. Bacillales members from the olive rhizosphere are effective biological control agents against the defoliating pathotype of Verticillium dahliaee. Agriculture. 8(7):90.
  • Hakkou R, Benzaazoua M, Bussière B. 2016. Valorization of phosphate waste rocks and Sludge from the Moroccan Phosphate Mines: challenges and perspectives. Procedia Eng 138:110–118.
  • Halimahtussadiyah R, Natsir M Kurniawati D, Utamy SP. 2017. Isolation and identification of chitinolytic bacteria of pohara river of South East Sulawesi and the optimization production of chitinase enzyme. AIP Conference Proceedings 1823:p.id020062.
  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G. 2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163(2):234–242.
  • Hanson WC. 1950. The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. J Sci Food Agric 1(6):172–173.
  • Hassan TU, Bano A. 2015. The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J. Soil Sci Plant Nutr 15:190–201.
  • Hassan TU, Bano A, Naz I. 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19(6):522–529.
  • Hepperle D. 2011. DNA Dragon 141 DNA Sequence Contig Assembler Software Available at: www.dna-dragon.com.
  • Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195.
  • Kang SM, Khan MA, Hamayun M, Kim LR, Kwon EH, Kang YS, Kim KY, Park JJ, Lee IJ. 2021. Phosphate-solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 rescues Alfalfa’s growth under post-drought stress. Agriculture 11(6):485.
  • Khan M, Rizvi A, Ahmed B, Lee J. 2022. Phosphate biofertilizers: recent trends and new perspectives. Chapter in Developments in Applied Microbiology and Biotechnology, Trends of Applied Microbiology for Sustainable Economy, Cambridge: Academic Press, p421–461.
  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120.
  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, Kumar V, Dhaliwal HS, Saxena AK. 2021. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and mobilizing microbes: a review. Pedosphere 31(1):43–75.
  • Kumar A, Dubey A. 2020. Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res 24:337–352.
  • Kumar G, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A. 2014. 2014. Screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:195946.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.
  • Kumari P, Meena M, Upadhyay RS. 2018. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal Agric Biotechnol 16:155–162.
  • Lahsini AI, Sallami A, Ait-Ouakrim EH, El Khedri H, Obtel M, Douira A, El Modafar C, Benkerroum N, Talbi C, Chakhchar A, et al. 2022. Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere. 23:100554.
  • Leontidou K, Genitsaris S, Papadopoulou A, Kamou N, Bosmali I, Matsi T, Madesis P, Vokou D, Karamanoli K, Mellidou I. 2020. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Sci Rep 10(1):14857.
  • Mahdi H, Mouhamad R. 2018. Behavior of phosphorus in the calcareous soil. Adv Agric Technol Plant Sci 1:180018.
  • Mahmud AA, Upadhyay SK, Srivastava AK, Bhojiya AA. 2021. Biofertilizers: a nexus between soil fertility and crop productivity under abiotic stress. Curr Opin Environ Sustain. 3:100063.
  • Manzoor M, Abbasi MK, Sultan T. 2017. Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiol J 34(1):81–95.
  • Mghazli N, Bruneel O, Zouagui R, Hakkou R, Sbabou L. 2022. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front Microbiol 13:1026991.
  • Mghazli N, Sbabou L, Hakkou R, Ouhammou A, El Adnani M, Bruneel O. 2021. Description of microbial communities of phosphate mine wastes in Morocco, a semi-arid climate, using high-throughput sequencing and functional prediction. Front Microbiol 12:666936.
  • Mitra D, Anđelković S, Panneerselvam P, Senapati A, Vasić T, Ganeshamurthy AN, Chauhan M, Uniyal N, Mahakur B, Radha TK. 2020. Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: current perspective. Commun Soil Sci Plant Anal 51(5):645–657.
  • Ngumbi EN, Kloepper JW. 2016. Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125.
  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24(5):533–542.
  • Omotayo OP, Babalola OO. 2021. Resident rhizosphere microbiome’s ecological dynamics and conservation: towards achieving the envisioned Sustainable Development Goals, a review. Int Soil Water Conserv Res 9(1):127–142.
  • Pandey S, Singh S, Yadav AN, Nain L, Saxena AK. 2013. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480.
  • Pantigoso HA, He Y, Manter DK, Fonte SJ, Vivanco JM. 2022. Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bull Natl Res Cent 46(1):224.
  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, et al. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12(3):e0173203.
  • Qarni A, Billah M, Hussain K, Shah SH, Ahmed W, Alam S, Sheikh AA, Jafri L, Munir A, Malik KM, et al. 2021. Isolation and characterization of phosphate solubilizing microbes from rock phosphate mines and their potential effect for sustainable agriculture. Sustainability. 13(4):2151.
  • Rasool A, Imran Mir M, Zulfajri M, Hanafiah MM, Azeem Unnisa S, Mahboob M. 2021. Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere. Microb Pathog 150:104734.
  • Raymond NS, Gómez-Muñoz B, van der Bom FJT, Nybroe O, Jensen LS, Müller-Stöver DS, Oberson A, Richardson AE. 2021. Phosphate‐solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol 229(3):1268–1277.
  • Rezakhani L, Motesharezadeh B, Tehrani MM, Etesami H, Mirseyed Hosseini H. 2019. Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L) plant fertilized with soluble or insoluble P source. Ecotoxicol Environ Saf 173:504–513.
  • Rodriguez H, Gonzalez T, Goire I, Bashan Y. 2004. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91(11):552–555.
  • Rojas-Solís D, Hernández-Pacheco CE, Santoyo G. 2016. Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in Tomato (Physalis ixocarpa Brot. ex Horm.). Rev Chapingo Ser Hortic. XXII(1):45–57.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.
  • Sehrawat A, Sindhu SS, Glick BR. 2022. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1):15–38.
  • Sendi Y, Pfeiffer T, Koch E, Mhadhbi H, Mrabet M. 2020. Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. J Plant Dis Prot 127(4):453–462.
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131.
  • Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS One 13(9):e0204408.
  • Tandon H, Cescas M, Tyner E. 1968. An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soils. Soil Sci Soc Am J 32(1):48–51.
  • Tao GC, Tian SJ, Cai MY, Xie GH. 2008. Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere 18(4):515–523.
  • Tian J, Ge F, Zhang D, Deng S, Liu X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical p cycle. Biology 10(2):158.
  • Turan M, Ataoğlu N, Şahιn F. 2006. Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J Sustain Agric 28(3):99–108.
  • Verma DK, Pandey AK, Mohapatra B, Srivastava S, Kumar V, Talukdar D, Yulianto R, Zuan ATK, Jobanputra AH, Asthir B. 2019. Plant growth-promoting rhizobacteria: an eco-friendly approach for sustainable agriculture and improved crop production. Chapter in Microbiology for Sustainable Agriculture, Soil Health, and Environmental Protection Apple Academic Press, 78.
  • Wang H, Liu R, You MP, Barbetti MJ, Chen Y. 2021. Pathogen biocontrol using plant Growth-Promoting Bacteria (PGPR): role of bacterial diversity. Microorganisms 9(9):1988.
  • Wang Z, Zhang H, Liu L, Li S, Xie J, Xue X, Jiang Y. 2022. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol 22(1):296.
  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703.
  • Xie J, Yan Z, Wang G, Xue W, Li C, Chen X, Chen D. 2021. A bacterium isolated from soil in a karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability. Front Microbiol 11:625450.
  • Xu H, Gao J, Portieles R, Du L, Gao X, Borras-Hidalgo O. 2022. Endophytic bacterium Bacillus aryabhattai induces novel transcriptomic changes to stimulate plant growth. PLoS One 17(8):e0272500.
  • Zheng BX, Ibrahim M, Zhang DP, Bi QF, Li HZ, Zhou GW, Ding K, Peñuelas J, Zhu YG, Yang XR. 2018. Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 8(1):47.
  • Zhou H, Ren ZH, Zu X, Yu XY, Zhu HJ, Li XJ, Zhong J, Liu EM. 2021. Efficacy of plant growth-promoting bacteria Bacillus cereus YN917 for bioconbrol of rice blast. Front Microbiol 12:684888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.