196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Potential Environmental Drivers of Fossil Bones Degradation—A Metabarcoding Approach in Two Carpathian Caves

, , , &
Pages 654-666 | Received 14 Jan 2023, Accepted 14 Jun 2023, Published online: 20 Jul 2023

References

  • Albuquerque A, França L, Rainey FA, Schumann P, Nobre MF, da Costa MS. 2011. Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst Appl Microbiol 34(8):595–599.
  • Alipour H, Raz A, Zakeri S, Djadid ND. 2016. Therapeutic applications of collagenase (metalloproteases): a review. Asian Pac J Trop Biomed 6(11):975–981.
  • Alonso A, Andelinovic S, Martín P, Sutlovic D, Erceg I, Huffine E, de Simón LF, Albarrán C, Definis-Gojanović M, Fernández-Rodriguez A, et al. 2001. DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J 42(3):260–266.
  • Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971.
  • Andrei A-Ş, Păuşan MR, Tămaş T, Har N, Barbu-Tudoran L, Leopold N, Banciu LH. 2017. Diversity and biomineralization potential of the epilithic bacterial communities inhabiting the oldest public stone monument of Cluj-Napoca (Transylvania, Romania). Front Microbiol 8:372.
  • Balme J, O’Connor S, Fallon S. 2018. New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia. Sci Rep 8(1):1–6.
  • Balzer A, Gleixner G, Grupe G, Schmidt H-L, Schramm S, Turban-Just S. 1997. In vitro decomposition of bone collagen by soil bacteria: the implications for stable isotope analysis in archaeometry. Archaeometry 39(2):415–429.
  • Bar-Matthews M, Marean CW, Jacobs Z, Karkanas P, Fisher EC, Herries AI, Brown K, Williams MH, Bernatchez J, Ayalon A, et al. 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quat Sci Rev 29(17–18):2131–2145.
  • Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, Metcalf LJ. 2018. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 9(2):104.
  • Bell LS, Skinner MF, Jones SJ. 1996. The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82(2):129–140.
  • Bercea S, Năstase-Bucur R, Mirea IC, Măntoiu DŞ, Kenesz M, Petculescu A, Baricz A, Andrei A-Ş, Banciu HL, Papp B, et al. 2018. Novel approach to microbiological air monitoring in show caves. Aerobiologia 34(4):445–468.
  • Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P. 1996. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Bacteriol 46(1):128–148.
  • Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, Dove CN, Fairbanks D, Gallery ER, Hart CS, et al. 2019. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio 10(5):e01318-19.
  • Buckley M, Kansa SW, Howard S, Campbell S, Thomas-Oates J, Collins M. 2010. Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J Archaeol Sci 37(1):13–20.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016a. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583.
  • Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. 2016b. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5:1492.
  • Can I, Javan GT, Pozhitkov AE, Noble PA. 2014. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods 106:1–7.
  • Cartozzo C, Simmons T, Swall J, Singh B. 2021. Postmortem submersion interval (PMSI) estimation from the microbiome of Sus scrofa bone in a freshwater river. Forensic Sci Int 318:110480.
  • Child AMM. 1995. Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22(2):165–174.
  • Cobaugh KL, Schaeffer SM, DeBruyn JM. 2015. Functional and structural succession of soil microbial communities below decomposing human cadavers. PLOS One 10(6):e0130201.
  • Colonese AC, Farrell T, Lucquin A, Firth D, Charlton S, Robson HK, Alexander M, Craig EO. 2015. Archaeological bone lipids as palaeodietary markers. Rapid Commun Mass Spectrom 29(7):611–618.
  • Comay O, Weissbrod L, Dayan T. 2021. Predictive modelling in paleoenvironmental reconstruction: the micromammals of Manot Cave, Israel. J Hum Evol 160:102652.
  • Constantin S, Robu M, Munteanu C-M, Petculescu A, Vlaicu M, Mirea I, Kenesz M, Drăguşin V, Hoffmann D, Anechitei V, et al. 2014. Reconstructing the evolution of cave systems as a key to understanding the taphonomy of fossil accumulations: the case of Ursilor Cave (Western Carpathians, Romania). Quat Int 339–340:25–40.
  • Constantin S, Mirea IC, Petculescu A, Arghir RA, Măntoiu DȘ, Kenesz M, Robu M, Moldovan OT. 2021. Monitoring human impact in show caves. A study of four Romanian caves. Sustainability 13(4):1619.
  • DADA2 Pipeline Tutorial (1.16). 2022. Available at http://benjjneb.github.io/dada2/tutorial.html.
  • Damann FE, Williams DE, Layton AC. 2015. Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci 60(4):844–850.
  • Damann FE, Jans MME. 2017. Chapter 12–microbes, anthropology and bones. In: Carter OD, Tomberlin KJ, Benbow EM, Metcalf LJ, editors. Forensic Microbiology. Hoboken, NJ: John Wiley and Sons Ltd., p312–327.
  • De Mandal S, Panda AK, Lalnunmawii E, Bisht SS, Kumar NS. 2015a. Illumina-based analysis of bacterial community in Khuangcherapuk cave of Mizoram, Northeast India. Genom Data 5:13–14.
  • De Mandal S, Sanga Z, Senthil Kumar N. 2015b. Metagenome sequencing reveals Rhodococcus dominance in Farpuk Cave, Mizoram, India, an Eastern Himalayan biodiversity hot spot region. Genome Announc 3(3):e610–e615.
  • Deel H, Emmons AL, Kiely J, Damann FE, Carter DO, Lynne A, Knight R, Xu ZZ, Bucheli S, Metcalf LJ. 2021. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition. mSphere 6(4):e00455-21.
  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre TF, Singh KB, Fierer N. 2018. A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325.
  • Devièse T, Karavanić I, Comeskey D, Kubiak C, Korlević P, Hajdinjak M, Radović S, Procopio N, Buckley M, Pääbo S, et al. 2017. Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the middle to upper paleolithic transition. Proc Natl Acad Sci USA 114(40):10606–10611.
  • Dhami NK, Reddy MS, Mukherjee A. 2013. Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314.
  • Dhami NK, Mukherjee A, Watkin EL. 2018. Microbial diversity and mineralogical-mechanical properties of calcitic cave speleothems in natural and in vitro biomineralization conditions. Front Microbiol 9:40.
  • Din RDR, Ariffin SHZ, Senafi S, Wahab RMA. 2014. Molecular mitochondrial DNA and radiographic approaches for human archaeology identification. Sains Malays 43(10):1523–1535.
  • Downes SM. 2021. The role of ancient DNA research in archaeology. Topoi 40(1):285–293.
  • Emmons AL, Mundorff AZ, Keenan SW, Davoren J, Andronowski J, Carter DO, DeBruyn MJ. 2019. Patterns of microbial colonization of human bone from surface-decomposed remains. bioRxiv 664482.
  • Emmons AL, Mundorff AZ, Keenan SW, Davoren J, Andronowski J, Carter DO, DeBruyn MJ. 2020. Characterizing the postmortem human bone microbiome from surface-decomposed remains. PLOS One 15(7):e0218636.
  • Emmons AL, Mundorff AZ, Hoeland KM, Davoren J, Keenan SW, Carter DO, Lynne A, Knight R, Xu ZZ, Bucheli S, et al. 2022. Postmortem skeletal microbial community composition and function in buried human remains. mSystems 7(2):e00041-22.
  • Epure L, Meleg IN, Munteanu CM, Roban RD, Moldovan OT. 2014. Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol J 31(2):116–127.
  • Eriksen AMH, Nielsen TK, Matthiesen H, Carøe C, Hansen LH, Gregory DJ, Turner-Walker G, Collins JM, Gilbert PTM. 2020. Bone biodeterioration—the effect of marine and terrestrial depositional environments on early diagenesis and bone bacterial community. PLOS One 15(10):e0240512.
  • Flux AL, Mazanec J, Strommenger B, Hummel S. 2017. Staphylococcus aureus sequences from osteomyelitic specimens of a pathological bone collection from preantibiotic times. Diversity 9(4):43.
  • Garcia MG, Marco Antonio MG, Claudia Ximena MH. 2016. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiol Res 182:21–30.
  • Gautam M, Azmi W. 2017. Screening and isolation of collagenase producing microorganism from proteins waste found in Himalayan region. J Appl Biotechnol Rep 4(1):558–565.
  • Gilbert MTP, Rudbeck L, Willerslev E, Hansen AJ, Smith C, Penkma KEH, Prangenberg K, Nielsen-Marsh MC, Jans EM, Arthur P, et al. 2005. Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J Archaeol Sci 32(5):785–793.
  • Gorgé O, Bennet AE, Massilani D, Daligault J, Pruvost M, Geigl M-E, Grange T. 2016. Analysis of ancient DNA in microbial ecology. In: Martin F, Uroz S, editors. Microbial Environmental Genomics (MEG). Methods in Molecular Biology. New York, NY: Humana Press, p289–315.
  • Gotherstrom A, Collins MJ, Angerbjorn A, Liden K. 2002. Bone preservation and DNA amplification. Archaeometry 44(3):395–404.
  • Hackett CJ. 1981. Microscopical focal destruction (tunnels) in ex-humed human bones. Med Sci Law 21(4):243–265.
  • Haidău C, Năstase-Bucur R, Bulzu P, Levei E, Cadar O, Mirea IC, Faur L, Fruth V, Atkinson I, Constantin S, et al. 2022. A 16S rRNA gene-based metabarcoding of phosphate-rich deposits in Muierilor Cave, South-Western Carpathians. Front Microbiol 13:877481.
  • Hajdinjak M, Mafessoni F, Skov L, Vernot B, Hübner A, Fu Q, Essel E, Nagel S, Nickel B, Richter J, et al. 2021. Initial upper palaeolithic humans in Europe had recent neanderthal ancestry. Nature 592(7853):253–257.
  • Hayward AC, Fegan N, Fegan M, Stirling GR. 2010. Stenotrophomonas and Lysobacter: ubiquitous plant‐associated gamma‐proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108(3):756–770.
  • Hershey OS, Barton HA. 2018. The microbial diversity of caves. In: Moldovan O, Kováč Ľ ,Halse S, editors. Cave Ecology. Ecological Studies. Cham: Springer, p69–90.
  • Hofreiter M, Sneberger J, Pospisek M, Vanek D. 2021. Progress in forensic bone DNA analysis: lessons learned from ancient DNA. Forensic Sci Int Genet 54:102538.
  • Hyde ER, Haarmann DP, Lynne AM, Bucheli RS, Petrosino FJ. 2013. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLOS One 8(10):e77733.
  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H. 2004. Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31(1):87–95.
  • Jones DS, Monnier G, Cooper A, Baković M, Pajović G, Borovinić N, Pajović G, Borovinić N, Tostevin G. 2021. Applying high-throughput rRNA gene sequencing to assess microbial contamination of a 40-year old exposed archaeological profile. J Archaeol Sci 126:105308.
  • Kazarina A, Gerhards G, Petersone-Gordina E, Kimsis J, Pole I, Zole E, Leonova V, Ranka R. 2019. Analysis of the bacterial communities in ancient human bones and burial soil samples: tracing the impact of environmental bacteria. J Archaeol Sci 109:104989.
  • Keenan SW, Emmons AL, Taylor LS, Phillips G, Mason AR, Mundorff AZ, Bernard CR, Davoren J, DeBruyn MJ. 2018. Spatial impacts of a multi-individual grave on microbial and microfaunal communities and soil biogeochemistry. PLOS One 13(12):e0208845.
  • Kim BR, Shin J, Guevarra RB, Lee JH, Kim DW, Seol KH, Lee J-H, Kim BH, Isaacson ER. 2017. Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27(12):2089–2093.
  • Konopiński MK. 2020. Shannon diversity index: a call to replace the original Shannon’s formula with unbiased estimator in the population genetics studies. PeerJ 8:e9391.
  • Lauritzen SE. 2018. Physiography of the caves. In: Moldovan O, Kováč Ľ, Halse S, editors. Cave Ecology. Ecological Studies. Cham: Springer, p7–21.
  • Leney MD. 2006. Sampling skeletal remains for ancient DNA (aDNA): a measure of success. Hist Arch 40(3):31–49.
  • Liang R, Lau MC, Saitta ET, Garvin ZK, Onstott TC. 2020. Genome-centric resolution of novel microbial lineages in an excavated Centrosaurus dinosaur fossil bone from the Late Cretaceous of North America. Environ Microbiome 15(1):1–18.
  • Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A. 2012. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14(2):414–425.
  • Lundelius EL. 2006. Cave site contributions to vertebrate history. Alcheringa 30(sup1):195–210.
  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12.
  • McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico CS, Mariot FR, Lee BS, et al. 2019. Forensic DNA analysis. Anal Chem 91(1):673–688.
  • McMahon S, Anderson RP, Saupe EE, Briggs DEG. 2016. Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils. Geology 44(10):867–870.
  • McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS One 8(4):e61217.
  • Meiri M, Stockhammer PW, Marom N, Bar-Oz G, Sapir-Hen L, Morgenstern P, Macheridis S, Rosen B, Huchon D, Maran J, et al. 2017. Eastern Mediterranean mobility in the bronze and early iron ages: inferences from ancient DNA of pigs and cattle. Sci Rep 7(1):1–10.
  • Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, Gebert MJ, Van Treuren W, Berg-Lyons D, et al. 2013. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2:e01104.
  • Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song JS, Amir A, Larsen P, Sangwan N, et al. 2016. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351(6269):158–162.
  • Mirea IC. 2020. [Late Quaternary environmental changes as revealed by the sedimentary archives from Muierilor Cave, Romania]. Unpublished PhD thesis, Doctoral School of Environmental Science, Cluj-Napoca.
  • Mirea IC, Robu M, Petculescu A, Kenesz M, Faur L, Arghir R, Tecsa V, Timar-Gabor A, Roban R-D, Panaiotu GC, et al. 2021. Last deglaciation flooding events in the Southern Carpathians as revealed by the study of cave deposits from Muierilor Cave, Romania. Palaeogeogr Palaeoclimatol Palaeoecol 562:110084.
  • Misner LM, Halvorson AC, Dreier JL, Ubelaker DH, Foran DR. 2009. The correlation between skeletal weathering and DNA quality and quantity. J Forensic Sci 54(4):822–828.
  • Moldovan OT, Bercea S, Năstase-Bucur R, Constantin S, Kenesz M, Mirea IC, Petculescu A, Robu M, Arghir RA. 2020. Management of water bodies in show caves – a microbial approach. Tour Manag 78:104037.
  • Morin E, Soulier MC. 2017. The paleolithic faunal remains from Crvena Stijena. In: Whallon R, editor. Crvena Stijena in Cultural and Ecological Context: Multidisciplinary Archaeological Research in Montenegro, Vol. 138. Podgorica: National Museum of Montenegro, Montenegrin Academy of Sciences and Arts, Special editions (Monographies and Studies), p266–294.
  • Müller K, Chadefaux C, Thomas N, Reiche I. 2011. Microbial attack of archaeological bones versus high concentrations of heavy metals in the burial environment. A case study of animal bones from a mediaeval copper workshop in Paris. Palaeogeogr Palaeoclimatol Palaeoecol 310(1–2):39–51.
  • Oppong D, King VM, Zhou X, Bowen JA. 2000. Cultural and biochemical diversity of pink-pigmented bacteria isolated from paper mill slimes. J Ind Microbiol Biotechnol 25(2):74–80.
  • Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK. 2014. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med 128(1):193–205.
  • Piñar G, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K. 2013. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 86(2):341–356.
  • Poddar K, Padhan B, Sarkar D, Sarkar A. 2021. Purification and optimization of pink pigment produced by newly isolated bacterial strain Enterobacter sp. PWN1. SN Appl Sci 3(1):105.
  • Procopio N, Ghignone S, Williams A, Chamberlain A, Mello A, Buckley M. 2019. Metabarcoding to investigate changes in soil microbial communities within forensic burial contexts. Forensic Sci Int Genet 39:73–85.
  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner OF. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196.
  • Prüfer K, De Filippo C, Grote S, Mafessoni F, Korlević P, Hajdinjak M, Vernot B, Skov L, Hsieh P, Peyrégne S, et al. 2017. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358(6363):655–658.
  • Rampelli S, Turroni S, Mallol C, Hernandez C, Galván B, Sistiaga A, Biagi E, Astolfi A, Brigidi P, Benazzi S, et al. 2021. Components of a Neanderthal gut microbiome recovered from fecal sediments from El Salt. Commun Biol 4(1):169.
  • Reeb V, Kolel A, McDermott TR, Bhattacharya D. 2011. Good to the bone: microbial community thrives within bone cavities of a bison carcass at Yellowstone National Park. Environ Microbiol 13(9):2403–2415.
  • Robu M. 2015. The Palaeontology of the Cave Bear Bone Assemblage from Ursilor Cave of Chiscau – Osteometry, Palaeoichnology, Taphonomy, and Stable Isotopes. Bucharest; Editura Universitara, p248.
  • Robu M, Mirea IC, Petculescu A, Constantin S. 2018. Palaeoichnology of an MIS 3 cave bear settlement–Ursilor cave (Western Carpathians, Romania). Palaeogeogr Palaeoclimatol Palaeoecol 493:126–135.
  • Rusznyak A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU, Neu TR, Frosch T, Popp J, Keiner R, Geletneky J, et al. 2012. Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic Herrenberg cave. Appl Environ Microbiol 78(4):1157–1167.
  • Ryan MP, Pembroke JT. 2018. Brevundimonas spp: emerging global opportunistic pathogens. Virulence 9(1):480–493.
  • Saitta ET, Liang R, Lau MC, Brown CM, Longrich NR, Kaye TG, Novak JB, Salzberg LS, Norell AM, Abbott DG, et al. 2019. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 8:e46205.
  • Salamon M, Tuross N, Arensburg B, Weiner S. 2005. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci USA 102(39):13783–13788.
  • Siles JA, Öhlinger B, Cajthaml T, Kistler E, Margesin R. 2018. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy). Sci Rep 8(1):1903.
  • Simpson EH. 1949. Measurement of diversity. Nature. 163(4148):688–688.
  • Smith CI, Nielsen-Marsh CM, Jans MME, Arthur P, Nord AG, Collins MJ. 2002. The strange case of Apigliano: early ‘fossilization’ of medieval bone in Southern Italy. Archaeometry 44(3):405–415.
  • Smith CI, Nielsen-Marsh CM, Jans MME, Collins MJ. 2007. Bone diagenesis in the European Holocene I: patterns and mechanisms. J Archaeol Sci 34(9):1485–1493.
  • Sørensen J, Nybroe O. 2004. Pseudomonas in the soil environment. In: Ramos JL, editor. Pseudomonas. Boston, MA: Springer, p369–401.
  • Spiers AJ, Buckling A, Rainey PB. 2000. The causes of Pseudomonas diversity. Microbiology 146(10):2345–2350.
  • Tok E, Olgun N, Dalfes HN. 2021. Profiling bacterial diversity in relation to different habitat types in a limestone cave: İnsuyu Cave, Turkey. Geomicrobiol J 38(9):776–790.
  • Tomczyk-Żak K, Zielenkiewicz U. 2016. Microbial diversity in caves. Geomicrobiol J 33(1):20–38.
  • Trueman CN, Martill DM. 2002. The long-term survival of bone: the role of bioerosion. Archaeometry 44(3):371–382.
  • Turner-Walker G, Syversen U. 2002. Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeometry 44(3):461–468.
  • Turner-Walker G. 2019. Light at the end of the tunnels? The origins of microbial bioerosion in mineralised collagen. Palaeogeogr Palaeoclimatol Palaeoecol 529:24–38.
  • van der Valk T, Pečnerová P, Díez-Del-Molino D, Bergström A, Oppenheimer J, Hartmann S, Xenikoudakis G, Thomas JA, Dehasque M, Sağlıcan E, et al. 2021. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591(7849):265–269.
  • Weber M, Scholz D, Schröder-Ritzrau A, Deininger M, Spötl C, Lugli F, Mertz-Kraus R, Jochum PK, Fohlmeister J, Stumpf FC, et al. 2018. Evidence of warm and humid interstadials in central Europe during early MIS 3 revealed by a multi-proxy speleothem record. Quat Sci Rev 200:276–286.
  • Wedl C. 1864. Uber einen im Zahnbein und Knochen keimenden Pilz, Akademi der Wissenschafen in Wien. Fitzungsberichte Naturwissenschaftliche Klasse ABI. Mineral Biol Erdkunde 50(1):171–193.
  • Wei S, Cui H, Jiang Z, Liu H, He H, Fang N. 2015. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz J Microbiol 46(2):455–464.
  • Weiner S, Bar-Yosef O. 1990. States of preservation of bones from prehistoric sites in the near east: a survey. J Archaeolog Sci 17(2):187–196.
  • White L, Booth TJ. 2014. The origin of bacteria responsible for bioerosion to the internal bone microstructure: results from experimentally-deposited pig carcasses. Forensic Sci Int 239:92–102.
  • Wu Y, Tan L, Liu W, Wang B, Wang J, Cai Y, Lin X. 2015. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front Microbiol 6:244.
  • Xiang Z, Zhu H, Yang B, Fan H, Guo J, Liu J, Kong Q, Teng Q, Shang H, Su L, et al. 2020. A glance at the gut microbiota of five experimental animal species through fecal samples. Sci Rep 10(1):1–11.
  • Yoon JH, Park YH. 2006. The genus Nocardioides. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes. New York, NY: Springer, p1099–1113.
  • Yoshino M, Kimijima T, Miyasaka S, Sato H, Seta S. 1991. Microscopical study on time since death in skeletal remains. Forensic Sci Int 49(2):143–158.
  • Zafar H, Saier MH. 2021. Gut Bacteroides species in health and disease. Gut Microbes 13(1):1848158.
  • Zaremba-Niedźwiedzka K, Andersson SG. 2013. No ancient DNA damage in Actinobacteria from the Neanderthal bone. PLOS One 8(5):e62799.
  • Zhou J, Agichtein E, Kallumadi S. 2020. Diversifying multi-aspect search results using Simpson’s diversity index. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event Ireland, 19–23 October 2020, p2345–2348.
  • Zhu HZ, Zhang ZF, Zhou N, Jiang CY, Wang BJ, Cai L, Liu S-J. 2019. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front Microbiol 10:1726.
  • Zink A, Reischl U, Wolf H, Nerlich AG. 2000. Molecular evidence of bacteremia by gastrointestinal pathogenic bacteria in an infant mummy from ancient Egypt. Arch Pathol Lab Med 124(11):1614–1618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.