97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In Situ Evaluation of Cr(VI) Bioavailability and Rhizosphere Effects in Reduced Cr-Contaminated Soil Based on Diffusive Gradients in Thin Films Technique

, , , , , , , & show all
Pages 128-134 | Received 18 Aug 2023, Accepted 20 Nov 2023, Published online: 04 Dec 2023

References

  • Ao M, Chen X, Deng T, Sun S, Tang Y, Morel JL, Qiu R, Wang S. 2022. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J Hazard Mater. 424:127233.
  • Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, Naidu R. 2003. Chemistry of chromium in soils with emphasis on tannery waste sites. Rev Environ Contam Toxicol. 178:53–91.
  • Banks MK, Schwab AP, Henderson C. 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere. 62:255–264.
  • Bashir MA, Naveed M, Ahmad Z, Gao B, Mustafa A, Nunez-Delgado A. 2020. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J Environ Manage. 259:110051.
  • Bolan NS, Adriano DC, Natesan R, Koo BJ. 2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. Journal of Environment Quality. 32:120.
  • Bolan N, Kunhikrishnan A, Gibbs J. 2013. Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant Soil. 367(1-2):615–625.
  • Chrysochoou M, Ferreira DR, Johnston CP. 2010. Calcium polysulfide treatment of Cr(VI)-contaminated soil. J Hazard Mater. 179:650.
  • Chrysochoou M, Johnston CP, Dahal G. 2012. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J Hazard Maters. 201-202:33–42.
  • Dambies L, Salinaro R, Alexandratos SD. 2004. Immobilized N-methyl-D-glucamine as an arsenate-selective resin. Environmental Science & Technology. 38:6139–6146.
  • De Flora S. 2000. Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis. 21:533–541.
  • Fang W, Williams PN, Zhang H, Yang Y, Yin D, Liu Z, Sun H, Luo J. 2021. Combining multiple high-resolution in situ techniques to understand phosphorous availability around rice roots. Environ Sci Technol. 55:13082–13092.
  • Gao B, Gao L, Xu D. 2022. New insight for the diffusion-resupply kinetics of Cr(VI) in contaminated soil using DGT/DIFS. Ecotoxicol Environ Saf. 242:113946.
  • Ge T, Wei X, Razavi BS, Zhu Z, Hu Y, Kuzyakov Y, Jones DL, Wu J. 2017. Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biol Biochem. 113:108–115.
  • Gobran GR, Wenzel WW, Lombi E. 2001. Trace elements in the rhizosphere. Boca Raton: CRC Press.
  • Graham MC, Farmer JG, Anderson P, Paterson E, Hillier S, Lumsdon DG, Bewley RJ. 2006. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Sci Total Environ. 364:32–44.
  • Guan DX, Williams PN, Luo J, Zheng JL, Xu HC, Cai C, Ma LQ. 2015. Novel precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments. Environ Sci Technol. 49:3653–3661.
  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW. 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol. 168:293–303.
  • Hoefer C, Santner J, Borisov SM, Wenzel WW, Puschenreiter M. 2017. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer. Anal Chim Acta. 950:88–97.
  • Kantar C. 2007. Heterogeneous processes affecting metal ion transport in the presence of organic ligands: Reactive transport modeling. Earth Sci Rev. 81(3-4):175–198.
  • Khan AA, Muthukrishnan M, Guha BK. 2010. Sorption and transport modeling of hexavalent chromium on soil media. J Hazard Mater. 174:444–454.
  • Khan N, Seshadri B, Bolan N, Saint C, Kirkham M, Chowdhury S, Yamaguchi N, Lee D, Li G, Kunhikrishnan A. 2016. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv Agron. 138:1–96.
  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C. 2006. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut. 144(1):62–69.
  • Lan Y, Deng B, Kim C, Thornton EC, Xu H. 2005. Catalysis of elemental sulfur nanoparticles on chromium (VI) reduction by sulfide under anaerobic conditions. Environ Sci Technol. 39:2087–2094.
  • Li Y, Liang J, Yang Z, Wang H, Liu Y. 2019. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS(2). Sci Total Environ. 658:315–323.
  • Liu ZD, Li HB, Fang X, Zhang H, Ma LQ, Luo J. 2019. Investigating lead species and bioavailability in contaminated soils: coupling DGT technique with artificial gastrointestinal extraction and in vivo bioassay. Environ Sci Technol. 53:5717–5724.
  • Liu WZ, Li J, Zheng JY, Song Y, Shi ZQ, Lin Z, Chai LY. 2020. Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue. Environ Sci Technol. 54:11971–11979.
  • Liu ZD, Wang HC, Xu RK. 2016. The effects of root surface charge and nitrogen forms on the adsorption of aluminum ions by the roots of rice with different aluminum tolerances. Plant Soil. 408(1-2):43–53.
  • Liu ZD, Williams PN, Fang W, Ji R, Han C, Ren JH, Li HB, Yin DY, Fan J, Xu H, et al. 2021. Enhanced mobilization of Cd from commercial pigments in the rhizosphere of flooded lowland rice. The Science of the Total Environment. 807:151032.
  • Luo J, Zhang H, Zhao FJ, Davison W. 2010. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants. Environ Sci Technol. 44(17):6636–6641.
  • Lyman WR, Preuss JAF. 1957. Boron-adsorbing resin and process for removing boron compounds from fluids, in, US,
  • Martí E, Sierra J, Cáliz J, Montserrat G, Vila X, Garau MA, Cruañas R. 2013. Ecotoxicity of Cr, Cd, and Pb on two mediterranean soils. Archives of Environmental Contamination & Toxicology. 64:377–387.
  • Mishra S, Shanker K, Srivastava MM, Srivastava S, Shrivastav R, Dass S, Prakash S. 1997. A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa): possible chemical modifications in rhizosphere. Agriculture, Ecosystems & Environment. 62(1):53–58.
  • Muehe EM, Adaktylou IJ, Obst M, Zeitvogel F, Behrens S, Planer-Friedrich B, Kraemer U, Kappler A. 2013a. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil. Environ Sci Technol. 47:13430–13439.
  • Muehe EM, Obst M, Hitchcock A, Tyliszczak T, Behrens S, Schroder C, Byrne JM, Michel FM, Kramer U, Kapplert A. 2013b. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species. Environmental Science & Technology. 47:14099–14109.
  • Palma LD, Gueye MT, Petrucci E. 2015. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater. 281:70–76.
  • Pan Y, Guan DX, Zhao D, Luo J, Zhang H, Davison W, Ma LQ. 2015. Novel speciation method based on diffusive gradients in thin-films for in situ measurement of CrVI in aquatic systems. Environ Sci Technol. 49:14267–14273.
  • Ren J, Williams PN, Luo J, Ma H, Wang X. 2015. Sediment metal bioavailability in Lake Taihu, China: evaluation of sequential extraction, DGT, and PBET techniques. Environmental Science & Pollution Research. 22:12919–12928.
  • Rupp H, Rinklebe J, Bolze S, Meissner R. 2010. A scale-dependent approach to study pollution control processes in wetland soils using three different techniques. Ecol Eng. 36(10):1439–1447.
  • Seshadri B, Bolan NS, Naidu R. 2015. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr. 15(ahead):0–0.
  • Sochaczewski L, Tych W, Davison B, Zhang H. 2007. 2D DGT induced fluxes in sediments and soils (2D DIFS). Environ Modell Softw. 22(1):14–23.
  • Srivastava S, Prakash S, Srivastava MM. 1999. Chromium mobilization and plant availability-the impact of organic complexing ligands. Plant & Soil. 212(2):201–206.
  • Tseng JK, Bielefeldt AR. 2002. Low-temperature chromium(VI) biotransformation in soil with varying electron acceptors. J Environ Qual. 31:1831.
  • Wang Z, Shan X-q, Zhang S. 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere. 46:1163–1171.
  • Warnken KW, Zhang H, Davison W. 2004. Performance characteristics of suspended particulate reagent-iminodiacetate as a binding agent for diffusive gradients in thin films. Analytica Chimica Acta. 508:41–51.
  • Wei XM, Ge TD, Zhu ZK, Hu YJ, Liu SL, Li Y, Wu JS, Razavi BS. 2019a. Expansion of rice enzymatic rhizosphere: temporal dynamics in response to phosphorus and cellulose application. Plant Soil. 445(1-2):169–181.
  • Wei XM, Zhu ZK, Wei L, Wu JS, Ge TD. 2019b. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere. 10:100145.
  • Williams PN, Santner J, Larsen M, Lehto NJ, Oburger E, Wenzel W, Glud RN, Davison W, Zhang H. 2014. Localized flux-maxima of arsenic, lead, and iron around root apices in flooded lowland rice. Environ Sci Technol. 48:8498–8506.
  • Williams PN, Zhang H, Davison W, Zhao S, Lu Y, Dong F, Zhang L, Pan Q. 2012. Evaluation of in situ DGT measurements for predicting the concentration of Cd in chinese field-cultivated rice: impact of soil Cd:Zn ratios. Environ Sci Technol. 46:8009–8016.
  • Wrobel K, Escobosa ARC, Ibarra AAG, Garcia MM, Barrientos EY, Wrobel K. 2015. Mechanistic insight into chromium(VI) reduction by oxalic acid in the presence of manganese(II). J Hazard Mater. 300:144–152.
  • Wu C, Ye ZH, Li H, Wu SC, Deng D, Zhu YG, Wong MH. 2012. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J Exp Bot. 63:2961–2970.
  • Xia S, Song Z, Jeyakumar P, Bolan N, Wang H. 2020. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environ Geochem Health. 42:1543–1567.
  • Xiao W, Ye X, Yang X, Li T, Zhao S, Zhang Q. 2015. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotox Environ Safe. 113:439–445.
  • Xu M, Barbosa da Silva E, Gao P, Liao R, Wu J, Ma J, Yang G, Zhang X, Xiao Y, Long L. 2020. Biochar impact on chromium accumulation by rice through Fe microbial-induced redox transformation. J Hazard Mater. 388:121807.
  • Yang Z, Zhang X, Jiang Z, Li Q, Huang P, Zheng C, Liao Q, Yang W. 2021. Reductive materials for remediation of hexavalent chromium contaminated soil - A review. The Science of the Total Environment. 773:145654.
  • Yin DX, Fang W, Guan DX, Williams PN, Moreno-Jimenez E, Gao Y, Zhao FJ, Ma LQ, Zhang H, Luo J. 2020. Localized intensification of arsenic release within the emergent rice rhizosphere. Environ Sci Technol. 54:3138–3147.
  • Yuan CL, Liu TX, Li FB, Liu CS, Yu HY, Sun WM, Huang WL. 2018. Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium. J Environ Manage. 217:747–753.
  • Yu HY, Li FB, Liu CS, Huang W, Yu WM. 2016a. Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of south China. Adv Agron. 137:279–317.
  • Yu HY, Liu CP, Zhu JS, Li FB, Deng DM, Wang Q, Liu CS. 2016b. Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut. 209:38–45.
  • Zhang H, Davison W. 1995. Performance characteristics of diffusion gradients in thin films for the insitu measurement of trace-metals in aqueous-solution. Analytical Chemistry. 67:3391–3400.
  • Zhang H, Zhao FJ, Sun B, Davison W, McGrath SP. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol. 35:2602–2607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.