106
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Reduction and Removal Mechanism of Cr(VI) by a Novel Penicillium Rubens LR6

, , ORCID Icon, , &
Pages 149-160 | Received 05 Jun 2023, Accepted 04 Dec 2023, Published online: 18 Dec 2023

References

  • Acevedo-Aguilar F, Espino-Saldaña A, Leon-Rodriguez I, Rivera-Cano M, Avila-Rodriguez M, Wrobel K, Wrobel K, Lappe P, Ulloa M, Gutiérrez-Corona JF. 2006. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Can J Microbiol. 52(9):809–815.
  • Ackerley D, Gonzalez C, Keyhan M, Blake R, Matin A. 2004. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol. 6(8):851–860.
  • Ahmad WA, Ahmad WHW, Karim NA, Raj ASS, Zakaria ZA. 2013. Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. Int Biodeter Biodegr. 85:571–576.
  • Anupong W, Jutamas K, On-Uma R, Alshiekheid M, Sabour A, Krishnan R, Chi NTL, Pugazhendhi A, Brindhadevi K. 2022. Bioremediation competence of Aspergillus flavus DDN on pond water contaminated by mining activities. Chemosphere. 304:135250.
  • Banerjee S, Joshi S, Mandal T, Halder G. 2017. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water. Chemosphere. 167:269–281.
  • Batool R, Yrjala K, Hasnain S. 2012. Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol. 22(4):547–554.
  • Benner S, Blowes D, Ptacek C, Mayer K. 2002. Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl Geochem. 17(3):301–320.
  • Chen J, Li X, Gan L, Jiang G, Zhang R, Xu Z, Tian Y. 2021. Mechanism of Cr(VI) reduction by Lysinibacillus sp. HST-98, a newly isolated Cr(VI)-reducing strain. Environ Sci Pollut Res Int. 28(46):66121–66132.
  • Chen Z, Huang Z, Cheng Y, Pan D, Pan X, Yu M, Pan Z, Lin Z, Guan X, Wu Z. 2012. Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere. 87(3):211–216.
  • Cheng Y, Yan F, Huang F, Chu W, Pan D, Chen Z, Zheng J, Yu M, Lin Z, Wu Z. 2010. Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environ Sci Technol. 44(16):6357–6363.
  • Chojnacka K. 2010. Biosorption and bioaccumulation – the prospects for practical applications. Environ Int. 36(3):299–307.
  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H. 2014. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere. 96:112–121.
  • Ding Y, Hao R, Xu X, Lu A, Xu H. 2019. Improving immobilization of Pb(II) ions by Aspergillus niger cooperated with photoelectron by anatase under visible light irradiation. Geomicrobiol J. 36(7):591–599.
  • Dittert IM, de Lima Brandão H, Pina F, da Silva EAB, de Souza S, de Souza AAU, Botelho CMS, Boaventura RAR, Vilar VJP. 2014. Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. J Chem Eng. 237:443–454.
  • Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA. 2011. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol. 45(6):2278–2285.
  • Ertugay N, Bayhan YK. 2008. Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus bisporus. J Hazard Mater. 154(1–3):432–439.
  • Fu F, Wang Q. 2011. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 92(3):407–418.
  • Ganguli A, Tripathi A. 1999. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett Appl Microbiol. 28(1):76–80.
  • Gouda M. 2000. Studies on chromate reduction by three Aspergillus species. Fresenius Environmental Bulletin. 9(11/12):799–808.
  • Irazusta V, Bernal AR, Estévez MC, de Figueroa LI. 2018. Proteomic and enzymatic response under Cr(VI) overload in yeast isolated from textile-dye industry effluent. Ecotoxicol Environ Saf. 148:490–500.
  • Jin R, Wang B, Liu G, Wang Y, Zhou J, Wang J. 2017. Bioreduction of Cr (VI) by Acinetobacter sp. WB-1 during simultaneous nitrification/denitrification process. J Chem Technol Biotechnol. 92(3):649–656.
  • Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD, Arulselvi PI. 2017. Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater. 333:42–53.
  • Kathiravan MN, Karthick R, Muthukumar K. 2011. Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp.: batch and continuous studies. J Chem Eng. 169(1-3):107–115.
  • Kumar V, Dwivedi SK. 2019. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere. 237:124567.
  • Lei J, Guo Q, Yao W, Duan T, Chen P, Zhu W. 2018. Bioconcentration of organic dyes via fungal hyphae and their derived carbon fibers for supercapacitors. J Mater Chem A. 6(23):10710–10717.
  • Leong YK, Chang J. 2020. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 303:122886.
  • Li B, Pan D, Zheng J, Cheng Y, Ma X, Huang F, Lin Z. 2008. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir. 24(17):9630–9635.
  • Li Y, Zou G, Yang S, Wang Z, Chen T, Yu X, Guo Q, He R, Duan T, Zhu W. 2019. Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater. J Chem Eng. 364:139–145.
  • Liu Y, Xu W, Zeng G, Tang C, Li C. 2004. Experimental study on Cr(VI) reduction by Pseudomonas aeruginosa. J Environ Sci. 16(5):797–801.
  • Long B, Ye J, Ye Z, He J, Luo Y, Zhao Y, Shi J. 2020. Cr(VI) removal by Penicillium oxalicum SL2: reduction with acidic metabolites and form transformation in the mycelium. Chemosphere. 253:126731.
  • Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Zhu J, Chen Y. 2013. Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. J Hazard Mater. 256-257:24–32.
  • Ma L, Chen N, Feng C, Hu Y, Li M, Liu T. 2019. Feasibility and mechanism of microbial-phosphorus minerals-alginate immobilized particles in bioreduction of hexavalent chromium and synchronous removal of trivalent chromium. Bioresour Technol. 294:122213.
  • Mabbett AN, Sanyahumbi D, Yong P, Macaskie LE. 2006. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application. Environ Sci Technol. 40(3):1015–1021.
  • Mangaiyarkarasi MM, Vincent S, Janarthanan S, Rao T, Tata B. 2011. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci. 18(2):157–167.
  • Martorell MM, Fernández PM, Fariña JI, Figueroa LI. 2012. Cr(VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile-dye factory effluents. Int Biodeterior Biodegr. 71:80–85.
  • Murugavelh S, Mohanty K. 2013. Isolation, identification and characterization of Cr(VI) reducing Bacillus cereus from chromium contaminated soil. J ChemEng. 230:1–9.
  • Narayan R, Meena RP, Patel AK, Prajapati AK, Srivastava S, Mondal MK. 2016. Characterization and application of biomass gasifier waste material for adsorptive removal of Cr(VI) from aqueous solution. Env Prog and Sustain Energy. 35(1):95–102.
  • Narayanan M, Kumarasamy S, Kandasamy G, Kandasamy S, Narayanamoorthy B, Shanmugam S, Alharbi SA, Almoallim HS, Pugazhendhi A. 2022. A novel insight into the fabrication of polyhydroxyalkanoates from actinobacteria Streptomyces toxytricini D2: screening, optimization, and biopolymer characterization. J Polym Environ. 30(5):2128–2141.
  • Narayani M, Shetty KV. 2013. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol. 43(9):955–1009.
  • Ortiz J, Soto J, Almonacid L, Fuentes A, Campos-Vargas R, Arriagada C. 2019. Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their effects on Eucalyptus globulus growth promotion. Plant Soil. 436(1-2):449–461.
  • Pan X, Liu Z, Chen Z, Cheng Y, Pan D, Shao J, Lin Z, Guan X. 2014. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Res. 55:21–29.
  • Park JH, Bolan N, Megharaj M, Naidu R. 2011. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J Environ Manage. 92(4):1115–1120.
  • Poljsak B, Pócsi I, Raspor P, Pesti M. 2010. Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol. 50(1):21–36.
  • Pradhan D, Sukla LB, Sawyer M, Rahman PK. 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem. 55:1–20.
  • Pushkar B, Sevak P, Parab S, Nilkanth N. 2021. Chromium pollution and its bioremediation mechanisms in bacteria: A review. J Environ Manage. 287:112279.
  • Puzon GJ, Roberts AG, Kramer DM, Xun L. 2005. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol. 39(8):2811–2817.
  • Qu M, Chen J, Huang Q, Chen J, Xu Y, Luo J, Wang K, Gao W, Zheng Y. 2018. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. Int Biodeterior Biodegr. 128:41–47.
  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C. 2008. Mechanisms of bacterial resistance to chromium compounds. Biometals. 21(3):321–332.
  • Ravichandran SR, Venkatachalam CD, Sengottian M, Sekar S, Kandasamy S, Subramanian KPR, Purushothaman K, Chandrasekaran AL, Narayanan M. 2022. A review on hydrothermal liquefaction of algal biomass on process parameters, purification and applications. Fuel. 313:122679.
  • Sahinkaya E, Kilic A. 2014. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction. Water Res. 50:278–286.
  • Shan B, Hao R, Xu H, Zhang J, Li J, Li Y, Ye Y. 2022. Hexavalent chromium reduction and bioremediation potential of Fusarium proliferatum S4 isolated from chromium-contaminated soil. Environ Sci Pollut Res Int. 29(52):78292–78302.
  • Sharma K, Giri R, Sharma R. 2022. Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int J Environ Sci Technol. 20(1):943–950.
  • Sharma S, Adholeya A. 2011. Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. Int Biodeterior Biodegr. 65(2):309–317.
  • Shi L, Xue J, Liu B, Dong P, Wen Z, Shen Z, Chen Y. 2018. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water. Ecotoxicol Environ Saf. 161:430–436.
  • Singh J, Carlisle DL, Pritchard DE, Patierno SR. 1998. Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis. Oncol Rep. 5(6):1307–1318.
  • Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H. 2020. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater. 386:121628.
  • Walter WG. 1961. Standard methods for the examination of water and wastewater. American Public Health Association. 51(6):940.
  • Wang Y, Chai L, Liao Q, Tang C, Liao Y, Peng B, Yang Z. 2016. Structural and genetic diversity of hexavalent chromium-resistant bacteria in contaminated soil. Geomicrobiol J. 33(3–4):222–229.
  • Wani R, Kodam K, Gawai K, Dhakephalkar P. 2007. Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater lake. Appl Microbiol Biotechnol. 75(3):627–632.
  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S. 2001. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol. 35(3):522–527.
  • Wu M, Li Y, Li J, Wang Y, Xu H, Zhao Y. 2019. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials. J Hazard Mater. 368:412–420.
  • Xu H, Hao R, Xu X, Ding Y, Lu A, Li Y. 2021. Removal of hexavalent chromium by Aspergillus niger through reduction and accumulation. Geomicrobiol J. 38(1):20–28.
  • Xu L, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H. 2012. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol. 166(4):933–941.
  • Yewalkar SN, Dhumal KN, Sainis JK. 2007. Chromium(VI)-reducing Chlorella spp. isolated from disposal sites of paper-pulp and electroplating industry. J Appl Phycol. 19(5):459–465.
  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. 2007. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater. 146(1-2):30–38.
  • Zeng Q, Hu Y, Yang Y, Hu L, Zhong H, He Z. 2019. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium. J Hazard Mater. 368:149–155.
  • Zeng X, Huang J, Hua B, Champagne P. 2020. Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances. Bioresour Technol. 310:123309.
  • Zhang H, Lu H, Wang J, Zhou J, Sui M. 2014. Cr(VI) reduction and Cr(III) immobilization by Acinetobacter sp. HK-1 with the assistance of a novel quinone/graphene oxide composite. Environ Sci Technol. 48(21):12876–12885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.