56
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Review of Microbial Grouting Technology: Experimental Studies, Theoretical Models and Engineering Applications

, &
Pages 613-626 | Received 25 Mar 2024, Accepted 10 Jun 2024, Published online: 26 Jun 2024

References

  • Alkhorshid NR, Araujo GLS, Palmeira EM. 2021. Consolidation of soft clay foundation improved by geosynthetic-reinforced granular columns: numerical evaluation. J Rock Mech Geotech Eng. 13(5):1173–1181.
  • Alshalif AF, Irwan JM, Othman N, Anneza LH, Abd Rahman N, Mohd Jaini Z, Yunus R, Rahmat SN. 2016. Isolation of Sulphate Reduction Bacteria (SRB) to improve compress strength and water penetration of bio-concrete. MATEC Web Conf. 47:01016.
  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. 1999. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure. 7(2):205–216.
  • Berkowitz B, Zhou JY. 1996. Reactive solute transport in a single fracture. Water Resour. Res. 32(4):901–913.
  • Biswas A, Krishna AM, Dash SK. 2016. Behavior of geosynthetic reinforced soil foundation systems supported on stiff clay subgrade. Int J Geomech. 16(5):04016007.
  • Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL. 2011. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol. J. 28(4):301–312.
  • Castro-Alonso MJ, Montañez-Hernandez LE, Sanchez-Muñoz MA, Macias Franco MR, Narayanasamy R, Balagurusamy N. 2019. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front Mater. 6:126. https://doi.org/10.3389/fmats.2019.00126.
  • Cheng L, Shahin MA, Chu J. 2019. Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech. 14(3):615–626.
  • Chu J, Ivanov V, He J, Naeimi M, Li B, Stabnikov V. 2011. Development of microbial geotechnology in Singapore, Geo-Frontiers 2011. Adv Geotech Eng. 4070–4078.
  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu H-L. 2014. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech. 9(2):277–285.
  • Chu J, Stabnikov V, Ivanov V. 2012. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol. J. 29(6):544–549.
  • Comadran-Casas C, Schaschke CJ, Akunna JC, Jorat ME. 2022. Cow urine as a source of nutrients for microbial-induced calcite precipitation in sandy soil. J Environ Manage. 304:114307. https://doi.org/10.1016/j.jenvman.2021.114307.
  • Cui M, Lai H, Hoang T, Chu J. 2021. One-phase-low-pH enzyme ­induced carbonate precipitation (EICP) method for soil improvement. Acta Geotech. 16(2):481–489.
  • Cunningham AB, Class H, Ebigbo A, Gerlach R, Phillips AJ, Hommel J. 2019. Field-scale modeling of microbially induced calcite precipitation. Comput Geosci. 23(2):399–414.
  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC. 2010. Bio-mediated soil improvement. Ecol Eng. 36(2):197–210.
  • Dijk P, Berkowitz B. 1998. Precipitation and dissolution of reactive solutes in fractures. Water Resour Res. 34(3):457–470.
  • Fei X, Hou Y, Ding Y. 2023. Modeling and analysis of carbon emission-absorption model associated with urbanization process of China. Era. 31(2):985–1003.
  • Feng Z, Li X, Shao X, Wang L. 2023. Preferred injection method and curing mechanism analysis for the curing of loose Pisha sandstone based on microbially induced calcite precipitation. Environ Sci Pollut Res. 30(5):12005–12019.
  • Ganendra G, De Muynck W, Ho A, Arvaniti EC, Hosseinkhani B, Ramos JA, Rahier H, Boon N. 2014. Formate oxidation-driven calcium carbonate precipitation by methylocystis parvus OBBP. Appl Environ Microbiol. 80(15):4659–4667.
  • Ganendra G, Wang J, Ramos JA, Derluyn H, Rahier H, Cnudde V, Ho A, Boon N. 2015. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP. Front Microbiol. 6:786.
  • Gat D, Ronen Z, Tsesarsky M. 2017. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere. 184: 524–531.
  • Ghasemi P, Montoya BM. 2022. Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope. J Geotech Geoenviron Eng. 148(9):04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836.
  • Gleaton J, Lai Z, Xiao R, Zhang K, Chen Q, Zheng Y. 2022. Optimization of mechanical strength of biocemented Martian regolith simulant soil columns. Constr Build Mater. 315:125741.
  • Gu T, Jia R, Unsal T, Xu D. 2019. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J Mater Sci Technol. 35(4):631–636.
  • Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM. 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng. 36(2):112–117.
  • He J, Gao Y, Gu Z, Chu J, Wang L. 2020. Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand. J Mater Civ Eng. 32(5):04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
  • He X, Ma G, Yang W, Chang Z, Hanlong L, Jian C, Yang X. 2020. Visualization investigation of bio-cementation process based on microfluidics. Chin J Geotech Eng. 42(06):1005–1012.
  • Ivanov V, Chu J, Stabnikov V. 2014. Iron- and calcium-based biogrouts for porous soils. Proc Inst Civil Eng Construct Mater. 167(1):36–41.
  • Ivanov V, Chu J. 2008. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol. 7(2):139–153.
  • Kang B, Zha F, Deng W, Wang R, Sun X, Lu Z. 2022. Biocementation of pyrite tailings using microbially induced calcite carbonate precipitation. Molecules. 27(11):3608.
  • Kang B, Zha F, Li H, Xu L, Sun X, Lu Z. 2022. Bio-mediated method for immobilizing copper tailings sand contaminated with multiple heavy metals. Crystals. 12(4):522.
  • Khodadadi TH, Kavazanjian E, van Paassen L, DeJong J. 2017. Bio-grout materials: a review. Grouting. p. 1–12.
  • Kirkland CM, Akyel A, Hiebert R, McCloskey J, Kirksey J, Cunningham AB, Gerlach R, Spangler L, Phillips AJ. 2021. Ureolysis-induced calcium carbonate precipitation (UICP) in the presence of CO2-affected brine: a field demonstration. Int J Greenh Gas Control. 109:103391.
  • Kirkland CM, Hiebert R, Hyatt R, McCloskey J, Kirksey J, Thane A, Cunningham AB, Gerlach R, Spangler L, Phillips AJ. 2021. Direct injection of biomineralizing agents to restore injectivity and wellbore integrity. SPE Prod Oper. 36(1):216–223.
  • Kirkland CM, Norton D, Firth O, Eldring J, Cunningham AB, Gerlach R, Phillips AJ. 2019. Visualizing MICP with X-ray μ-CT to enhance cement defect sealing. Int J Greenh Gas Control. 86:93–100.
  • Kirkland CM, Thane A, Hiebert R, Hyatt R, Kirksey J, Cunningham AB, Gerlach R, Spangler L, Phillips AJ. 2020. Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): a field demonstration. J Pet Sci Eng. 190:107060.
  • Kunst F, Rapoport G. 1995. Salt stress is an environmental signal ­affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol. 177(9):2403–2407.
  • Lai H, Cui M, Chu J. 2023. Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method. Acta Geotech. 18(6):3259–3272.
  • Lai Y, Yu J, Liu S, Liu J, Wang R, Dong B. 2021. Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Constr Build Mater. 273:121729.
  • Laloui L, Fauriel S. 2011. Biogrout propagation in soils. Multisc Multiphys Process Geomechanics: Results of the Workshop on Multiscale and Multiphysics Process in Geomechanics, Stanford, June 23-25, 2010. Berlin, Heidelberg: Springer. p. 77–80.
  • Lauchnor EG, Top DM, Parker AE, Gerlach R. 2015. Whole cell kinetics of ureolysis by S porosarcina pasteurii. J Appl Microbiol. 118(6):1321–1332.
  • Li B. 2015. Geotechnical properties of biocement treated sand and clay. Doctoral thesis, Nanyang Technological University, Singapore.
  • Li W, Huang Y. 2023. Model tests on the effect of dip angles on flow behavior of liquefied sand. J Earth Sci. 34(2):381–385.
  • Li Y, Li Y, Guo Z, Xu Q. 2023. Durability of MICP-reinforced calcareous sand in marine environments: laboratory and field experimental study. Biogeotechnics. 1(2):100018.
  • Lian J, Xu H, He X, Yan Y, Fu D, Yan S, Qi H. 2019. Biogrouting of hydraulic fill fine sands for reclamation projects. Mar Geores Geotechnol. 37(2):212–222.
  • Lin H, Suleiman MT, Brown DG, Kavazanjian EJr. 2016. Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng. 142(2):04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
  • Liu H, Ma G, Xiao Y, Ding X, Fang X. 2019. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands. Chin Ground Improve. 1(01):26–31.
  • Liu X, Pan C, Yu J, Fan J. 2021. Study on micro-characteristics of microbe-induced calcium carbonate solidified loess. Crystals. 11(12):1492. https://doi.org/10.3390/cryst11121492.
  • Lu T, Wei Z, Wang W, Yang Y, Cao G, Wang Y, Liao H. 2021. Experimental Investigation of sample preparation and grouting technology on microbially reinforced tailings. Constr Build Mater. 312:125458.
  • Luo L, Lin H, Schmidt J. 2010. Quantitative relationships between soil macropore characteristics and preferential flow and transport. Soil Science Soc Am J. 74(6):1929–1937.
  • Martinez BC, DeJong JT, Ginn TR, Montoya BM, Barkouki TH, Hunt C, Tanyu B, Major D. 2013. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng. 139(4):587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
  • Minto JM, MacLachlan E, El Mountassir G, Lunn RJ. 2016. Rock fracture grouting with microbially induced carbonate precipitation. Water Resour. Res. 52(11):8827–8844. https://doi.org/10.1002/2016WR018884.
  • Nawarathna THK, Nakashima K, Kawasaki S. 2019. Chitosan enhances calcium carbonate precipitation and solidification mediated by bacteria. Int J Biol Macromol. 133:867–874.
  • Oliveira PJV, Rosa JAO. 2020. Confined and unconfined behavior of a silty sand improved by the enzymatic biocementation method. Trans Geotech. 24:100400.
  • Peng D, Qiao S, Luo Y, Ma H, Zhang L, Hou S, Wu B, Xu H. 2020. Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. J Hazard Mater. 400:123116.
  • Pham VP, Nakano A, van der Star WRL, Heimovaara TJ, van Paassen LA. 2018. Applying MICP by denitrification in soils: a process analysis. Environ Geotech J. 5(2):79–93.
  • Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L. 2013. Engineered applications of ureolytic biomineralization: a review. Biofouling. 29(6):715–733.
  • Qabany AA, Kenichi Soga MA, Carlos Santamarina AMA. 2012. Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng. 138(8):992–1001.
  • Qabany AA, Soga K. 2013. Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique. 63(4):331–339.
  • Rowshanbakht K, Khamehchiyan M, Sajedi RH, Nikudel MR. 2016. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol Eng. 89:49–55.
  • Roy N, Frost JD, Terzis D. 2023. 3-D pore network and contact analysis of cemented materials: case study on microbial-induced-calcite-precipitated sands.
  • Saneiyan S, Ntarlagiannis D, Ohan J, Lee J, Colwell F, Burns S. 2019. Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes. Ecol Eng. 127:36–47.
  • Shahrokhi-Shahraki R, Zomorodian SMA, Niazi A, O’Kelly BC. 2015. Improving sand with microbial-induced carbonate precipitation. Proc Inst Civil Eng Ground Improve. 168(3):217–230.
  • Sharma M, Satyam N, Tiwari N, Sahu S, Reddy KR. 2021. Simplified biogeochemical numerical model to predict pore fluid chemistry and calcite precipitation during biocementation of soil. Arab J Geosci. 14(9):807.
  • Shu S, Chen H, Meng H. 2022. Modelling Microbially Induced Carbonate Precipitation (MICP) in microfluidic porous chips. Geofluids. 2022:1–8.
  • Šimůnek J, van Genuchten MT. 2008. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J. 7(2):782–797.
  • Sridhar S, Bhatt N, Suraishkumar GK. 2021. Mechanistic insights into ureolysis mediated calcite precipitation. Biochem Eng J. 176:108214.
  • Stocks-Fischer S, Galinat JK, Bang SS. 1999. Microbiological precipitation of CaCO3. Soil Biol Biochem. 31(11):1563–1571.
  • Sun X, Miao L, Tong T, Wang C. 2018. Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification. J Mater Civ Eng. 30(11):04018301. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002507.
  • Tan Y, Xie X, Wu S, Wu T. 2017. Microbially induced CaCO3 precipitation: hydraulic response and micro-scale mechanism in porous media. Scienceasia. 43(1):1.
  • Teng F, Sie Y, Ouedraogo C. 2021. Strength improvement in silty clay by microbial-induced calcite precipitation. Bull Eng Geol Environ. 80(8):6359–6371.
  • Terzis D, Laloui L, Dornberger S, Harran R. 2020. A full-scale application of slope stabilization via calcite bio-mineralization followed by long-term GIS surveillance. Geo-Congress 2020. Reston, VA: American Society of Civil Engineers; p. 65–73.
  • Terzis D, Laloui L. 2018. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Sci Rep. 8(1):1–11. https://doi.org/10.1038/s41598-018-19895-w.
  • Tian K, Wang X, Zhang S, Zhang H, Zhang F, Yang A. 2020. Effect of reactant injection rate on solidifying aeolian sand via microbially induced calcite precipitation. J Mater Civ Eng. 32(10):04020291.
  • Tian Z, Tang X, Li J, Xiu Z, Xue Z. 2021. Influence of the grouting parameters on microbially induced carbonate precipitation for soil stabilization. Geomicrobiol J. 38(9):755–767.
  • Tian Z, Tang X, Xiu Z, Xue Z. 2023. The spatial distribution of microbially induced carbonate precipitation in sand column with different grouting strategies. J Mater Civ Eng. 35(2):04022437.
  • Tobler DJ, Minto JM, El Mountassir G, Lunn RJ, Phoenix VR. 2018. Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: influence on hydraulic and mechanical performance. Water Resour Res. 54(10):8295–8308.
  • van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM. 2010. Potential soil reinforcement by biological denitrification. Ecol Eng. 36(2):168–175.
  • van Paassen LA, Ghose R, van der Linden TJM, van der Star WRL, van Loosdrecht MCM. 2010. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng. 136(12):1721–1728.
  • van Paassen LA. 2011. Bio-mediated ground improvement: from laboratory experiment to pilot applications. Geo-frontiers 2011: Advances in Geotechnical Engineering. p. 4099–4108.
  • van Wijngaarden WK, van Paassen LA, Vermolen FJ, van Meurs G, A, M, Vuik C. 2016. A reactive transport model for biogrout compared to experimental data. Transp Porous Med. 111(3):627–648.
  • van Wijngaarden WK, Vermolen FJ, van Meurs G, A, M, Vuik C. 2011. Modelling biogrout: a new ground improvement method based on microbial-induced carbonate precipitation. Transp Porous Med. 87(2):397–420.
  • van Wijngaarden WK, Vermolen FJ, van Meurs G, A, M, Vuik C. 2013. Various flow equations to model the new soil improvement method biogrout. Numer Math Adv Appl. 2011:633–641.
  • Van Wijngaarden WK, Vermolen FJ, Van Meurs G, A, M. 2010. Modelling the new soil improvement method biogrout: extension to 3D. Numer Math Adv Appl. 2009:893–900.
  • Wang G, Han D, Jiang C, Zhang Z. 2020. Seepage characteristics of fracture and dead-end pore structure in coal at micro- and meso-scales. Fuel. 266:117058.
  • Wang S, Wang J, Yuan C, Chen L, Xu S, Guo K. 2018. Development of the nano-composite cement: application in regulating grouting in complex ground conditions. J Mt Sci. 15(7):1572–1584.
  • Wang X, Nackenhorst U. 2019. A modeling study of the bio-geochemical processes in microbially induced calcite precipitation. Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3: Towards a Sustainable Geoenvironment 8th. Singapore: Springer. p. 272–279.
  • Wang X, Nackenhorst U. 2020. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation. Adv Water Resour. 140:103563.
  • Wang X, Nackenhorst U. 2022. Micro-feature-motivated numerical analysis of the coupled bio-chemo-hydro-mechanical behaviour in MICP. Acta Geotech. 17(10):4537–4553.
  • Wang Y, Bradford SA, Šimůnek J. 2014. Estimation and upscaling of dual-permeability model parameters for the transport of E. coli D21g in soils with preferential flow. J Contam Hydrol. 159:57–66.
  • Wang Y, Konstantinou C, Soga K, Biscontin G, Kabla AJ. 2022. Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP-treated sandy soils. Acta Geotech. 17(9):3817–3838.
  • Wang Y, Soga K, Dejong JT, Kabla AJ. 2019. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). Géotechnique. 69(12):1086–1094.
  • Wang Y, Wang G, Zhong Y, Shao J, Zhao J, Li D. 2023. Comparison of different treatment methods on macro-micro characteristics of Yellow River silt solidified by MICP technology. Mar Geores Geotechnol. 41(4):425-435.
  • Wei Z. 2019. The influence of injecting parameters and curing conditions on microbial cemented silt. Master’s thesis, Nanjing Forestry University, Nanjing, China. https://doi.org/10.27242/d.cnki.gnjlu.2019.000146.
  • Whiffin VS, van Paassen LA, Harkes MP. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24(5):417–423.
  • Whiffin VS. 2004. Microbial CaCO3 precipitation for the production of biocement. Doctoral thesis, Murdoch University, Perth, Austalia.
  • Wu C, Chu J, Cheng L, Wu S. 2019. Biogrouting of aggregates using premixed injection method with or without pH adjustment. J Mater Civ Eng. 31(9):06019008.
  • Wu C, Chu J, Wu S, Cheng L, van Paassen LA. 2019. Microbially induced calcite precipitation along a circular flow channel under a constant flow condition. Acta Geotech. 14(3):673–683.
  • Xiao P, Liu H, Xiao Y, Stuedlein AW, Evans TM. 2018. Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn Earthq Eng. 107:9–19.
  • Xiao Y, Ma G, Wu H, Lu H, Zaman M. 2022. Rainfall-induced erosion of biocemented graded slopes. Int J Geomech. 22(1):04021256.
  • Xiao Y, Zhou W, Shi J, Lu H, Zhang Z. 2022. Erosion of biotreated field-scale slopes under rainfalls. J Perform Constr Facil. 36(3):04022030.
  • Xu H, Guo J, Yuan K, Xu Y. 2023. Radial microbial grouting method by intubation for sandy soil reinforcement: experimental and numerical investigation. Constr Build Mater. 375:130960.
  • Xu Z, Bai T, Pang Y, Zhou F, Huang J. 2016. Experimental study of the filling effect of MICP microbial grouting in silt. 2016 International Conference on Architectural Engineering and Civil Engineering; p. 480–484.
  • Yang Y, Chu J, Liu H, Cheng L. 2023. Improvement of uniformity of biocemented sand column using CH3COOH-buffered one-phase-low-pH injection method. Acta Geotech. 18(1):413–428.
  • Yin T, Lin H, Dong Y, Wei Z, Li B, Liu C, Chen X. 2021. Inhibition of cadmium releasing from sulfide tailings into the environment by carbonate-mineralized bacteria. J Hazard Mater. 419:126479.
  • Yu X, Rong H. 2022. Seawater based MICP cements two/one-phase ­cemented sand blocks. Appl Ocean Res. 118:102972.
  • Zhang J, Shi X, Chen X, Huo X, Yu Z. 2021. Microbial-induced ­carbonate precipitation: a review on influencing factors and applications. Adv Civ Eng. 2021(1):9974027. https://doi.org/10.1155/2021/9974027.
  • Zhang J, Song H, Chen Z, Liu S, Wei Y, Huang J, Guo C, Dang Z, Lin Z. 2018. Biomineralization mechanism of U(VI) induced by Bacillus cereus 12-2: the role of functional groups and enzymes. Chemosphere. 206:682–692.
  • Zhang T, Klapper I. 2014. Critical occlusion via biofilm induced calcite precipitation in porous media. New J Phys. 16(5):055009.
  • Zhao Z, Shao G. 2021. Experimental study on marine silt reinforcement by microbial induced calcium precipitation. J Appl Basic Sci Eng. 29(1):231–238. https://doi.org/10.16058/j.issn.1005-0930.2021.01.020.
  • Zhi X, An X. 2023. Low carbon technology roadmap of China cement industry. J Sustain Cen Based Mater. 12(6):771–774.
  • Zhu D, Chen T, Wang Z, Niu R. 2021. Detecting ecological spatial-temporal changes by remote sensing ecological index with local adaptability. J Environ Manage. 299:113655.
  • Zhu X, Li W, Zhan L, Huang M, Zhang Q, Achal V. 2016. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environ Pollut. 219:149–155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.