22
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The Formation of Bixbyite-Type Mn2O3 via Pyocyanin-Dependent Mn(II) Oxidation of Soil-Derived Pseudomonas aeruginosa

, , , , , , , & ORCID Icon show all
Pages 660-671 | Received 02 Dec 2023, Accepted 10 Jun 2024, Published online: 26 Jun 2024

References

  • Abdelaziz AA, Kamer AMA, Al-Monofy KB, Al-Madboly LA. 2022. A purified and lyophilized Pseudomonas aeruginosa derived pyocyanin induces promising apoptotic and necrotic activities against MCF-7 human breast adenocarcinoma. Microb Cell Fact 21:262.
  • Abdelaziz AA, Kamer AMA, Al-Monofy KB, Al-Madboly LA. 2023. Pseudomonas aeruginosa′s greenish-blue pigment pyocyanin: its production and biological activities. Microb Cell Fact 22:110.
  • Andeer PF, Learman DR, Mcllvin M, Dunn JA, Hansel CM. 2015. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production. Environ Microbiol 17:3925–3936.
  • Ansari SA, Parveen N, Kotb HM, Alshoaibi A. 2020. Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochim Acta 355:136783.
  • Bohu T, Santelli CM, Akob DM, Neu TR, Ciobota V, Rösch P, Popp J, Nietzsche S, Küsel K. 2015. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1. Front Microbiol 6:734.
  • Boogerd FC, de Vrind JPM. 1987. Manganese oxidation by Leptothrix discophora. J Bacteriol 169(2):489–494.
  • Chen S, Ding Z, Chen J, Luo J, Ruan X, Li Z, Liao F, He J, Li D. 2022. A soil-borne Mn(II)-oxidizing bacterium of Providencia sp. exploits a strategy of superoxide production coupled to hydrogen peroxide consumption to generate Mn oxides. Arch Microbiol 204(3):168.
  • Chen Z, Jiao Z, Pan D, Li Z, Wu M, Shek C, Wu CML, Lai JKL. 2012. Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem Rev 112(7):3833–3855.
  • Das T, Kutty SK, Kumar N, Manefield M. 2013. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8(3):e58299.
  • Emerson D, Ghiorse WC. 1992. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol 58(12):4001–4010.
  • Flemming HC, Neu TR, Wozniak DJ. 2007. The EPS matrix: the “house of biofilm cells. J Bacteriol 189(22):7945–7947.
  • Gao H, Yu Z, Wang M, Wu C, Yao M. 2022. Resource utilization of pyrolytic derivative from petroleum-contaminated soil as heavy metal adsorbent enhanced by colloidal MnO2 pretreatment. J Soil Sediment 22:3030–3040.
  • Geszvain K, Smesrud L, Tebo BM. 2016. Identification of a third Mn(II) oxidase enzyme in Pseudomonas putida GB-1. Appl Environ Microbiol 82(13):3774–3782.
  • Gillot B, Guendouzi ME, Laarj M. 2001. Particle size effects on the oxidation-reduction behavior of Mn3O4 hausmannite. Mater Chem Phys 70(1):54–60.
  • Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Mädler L, Stucky GD, Holden PA. 2010. Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76(21):7292–7298.,
  • Hoseinpour V, Ghaemi N. 2018. Green synthesis of manganese nanoparticles: applications and future perspective-a review. J Photoch Photobio B 189:234–243.
  • Jeyaraj A, Subramanian S. 2022. Synthesis, optimization, and characterization of biogenic manganese oxide (BioMnOx) by bacterial isolates from mangrove soils with sorbents property towards different toxic metals. Biometals 35(3):429–449.
  • Kaur G, Kumar V, Arora A, Tomar A, Sur R, Dutta D, Ashish 2017. Affected energy metabolism under manganese stress governs cellular toxicity. Sci Rep 7(1), 11645.
  • Khan Z, Nisar MA, Hussain SZ, Arshad MN, Rehman A. 2015. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99(24):10745–10757.
  • Krumbein WE, Altmann HJ. 1973. A new method for detection and enumeration of manganese oxidizing and reducing microorganisms. Helgoland Wiss Meer 25:347–356.
  • LaBauve AE, Wargo MJ. 2012. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol Chapter 6:Unit 6E.1.1–6E.1.8.
  • Learman DR, Wankel SD, Webb SM, Martinez N, Madden AS, Hansel CM. 2011. Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochim Cosmochim Acta 75(20):6048–6063.
  • Li Q, He Y, Yang A, Hu X, Liu F, Mu J, Mei S, Yang L. 2023. Antimony(III) removal by biogenic manganese oxides formed by Pseudomonas aeruginosa PA-1: kinetics and mechanisms. Environ Sci Pollut R 30:97102–97114.
  • Li Z, Liao F, Ding Z, Chen S, Li D. 2022. Providencia manganoxydans sp. nov., a Mn(II)-oxidizing bacterium isolated from heavy metal contaminated soils in Hunan Province, China. Int J Syst Evol Microbiol 72:005474.
  • Li D, Li R, Ding Z, Ruan X, Luo J, Chen J, Zheng J, Tang J. 2020. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere 241:125039.
  • Liu ZH, Ooi K. 2003. Preparation and alkali-Metal ion extraction/insertion reactions with nanofibrous manganese oxide having 2 × 4 tunnel structure. Chem Mater 15(19):3696–3703.
  • Luo J, Ruan X, Chen W, Chen S, Ding Z, Chen A, Ding L. 2022. Abiotic transformation of atrazine in aqueous phase by biogenic bixbyite-type Mn2O3 produced by a soil-derived Mn(II)-oxidizing bacterium of Providencia sp. J Harzard Mater 436:129243.
  • Mirna D, Vanja K, Mihkel P, Sophie R, Anna F, Nicolas B, Nobumichi T, Gregory F, Tanja B. 2019. Light-driven anaerobic microbial oxidation of manganese. Nature 576(7786):311–314.
  • Moradali MF, Ghods S, Rehm BHA. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39.
  • Muller M, Merrett ND. 2014. Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob Agents Chemother 58:5492–5499.
  • Nakama K, Medina M, Lien A, Ruggieri J, Collins K, Johnson HA. 2014. Heterologous expression and characterization of the manganese oxidizing protein from Erythrobacter sp. strain SD21. Appl Environ Microbiol 80(21):6837–6842.
  • Nelson YM, Lion LW, Ghiorse WC, Shuler ML. 1999. Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65(1):175–180.
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192.
  • Parveen N, Ansari SA, Ansari MZ, Ansari MO. 2022. Manganese oxide as an effective electrode material for energy storage: a review. Environ Chem Lett 20(1):283–309.
  • Perry EK, Meirelles LA, Newman DK. 2022. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 20(3):129–142.
  • Remucal CK, Ginder-Vogel M. 2014. A critical review of the reactivity of manganese oxides with organic contaminants. Environ Sci Proc Imp 16:1247–1266.
  • Ren CY, Xu QJ, Alvarez PJJ, Zhu L, Zhao HP. 2023. Simultaneous antibiotic removal and mitigation of resistance induction by manganese bio-oxidation process. Water Res 244:120442.
  • Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI. 2007. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM3067. Environ Microbiol 9(4):944–953.
  • Silva RMP, Rodríguez AÁ, De Oca JMGM, Moreno DC. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresource Technol 100:1533–1538.
  • Singh R, Bishnoi NR, Kirrolia A. 2013. Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology. Bioresource Technol 138:222–234.
  • Soldatova AV, Romano CA, Tao L, Stich TA, Casey WH, David Britt R, Tebo BM, Spiro TG. 2017b. Mn(II) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism. J Am Chem Soc 139(33):11381–11391.
  • Soldatova AV, Tao L, Romano CA, Stich TA, Casey WH, David Britt R, Tebo BM, Spiro TG. 2017a. Mn(II) oxidation by the multicopper oxidase complex Mnx: A binuclear activation mechanism. J Am Chem Soc 139(33):11369–11380.
  • Stackebrandt E, Goebel BM. 1994. Taxonomic Note: a place for dna-dna reassociation and 16s rrna sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44(4):846–849.
  • Sun YT, Zhang T, Guan YH, Yang DX, Zhang J, Xu JS. 2021. Mn2O3 porous microsheets prepared by a chemical precipitation method as an effective electrochemical sensor for non-enzymatic glucose detection. J Mater Sci 56(25):14035–14046.
  • Tebo BM, Clement BG, Dick GJ, Hurst CJ, Crawford RL, Garland JL, Lipson DA. 2007. Biotransformations of manganese. In Mills, AL, Stetzenbach, LD, editors. Manual of Environmental Microbiology, 3rd ed. Washington, DC: ASM Press.
  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS. 2005. Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13(9):421–428.
  • Thi MTT, Wibowo D, Rehm BHA. 2020. Pseudomonas aeruginosa biofilms. Int J Mol Sci 21(22):8671.
  • Tran TN, Kim DG, Ko SO. 2018. Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17α-ethinylestradiol. J Harzard Mater 344:350–359.
  • Villalobos M, Toner B, Bargar J, Sposito G. 2003. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67(14):2649–2662.
  • Wang Y, Cui JW, Luo L, Zhang JC, Wang Y, Qin YQ, Zhang Y, Shu X, Lv J, Wu YC. 2017. One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing. Appl Surf Sci 423:1182–1187.
  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703.
  • Wright MH, Geszvain K, Oldham VE, Luther GW, Tebo BM. 2018. Oxidative formation and removal of complexed Mn(III) by Pseudomonas species. Front Microbiol 9:560.
  • Yu H, Leadbetter JR. 2020. Bacterial chemolithoautotrophy via manganese oxidation. Nature 583(7816):453–458.
  • Zhang Z, Yin H, Tan W, Koopal LK, Zheng L, Feng X, Liu F. 2014. Zn sorption to biogenic bixbyite-like Mn2O3 produced by Bacillus CUA isolated from soil: XAFS study with constraints on sorption mechanism. Chem Geol 389:82–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.