61
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Potentiometric titration method for determining rates of sulfate reduction in a constructed wetland

, , &
Pages 65-79 | Received 30 Oct 1995, Published online: 28 Jan 2009

References

  • American Society for Testing and Materials . 1989 . Annual book of ASTM standards , Vol. 11.01 , Easton, MD : ASTM .
  • Barton , L. L. , ed. 1995 . Sulfate‐reducing bacteria. , New York : Plenum Press .
  • Berner , R. A. 1964 . An idealized model of dissolved sulfate distribution in recent sediments . Geochim. Cosmochim. Acta , 28 : 1497 – 1503 .
  • Brierley , C. L. 1990 . Bioremediation of metal contaminated surface and groundwaters . Geomicrobiol. J. , 8 : 201 – 223 .
  • Clesceri , L. S. , Grcenberg , A. E. and Trussell , R. R. , eds. 1989 . Standard methods for the examination of water and wastewater , 17th ed. , 1 – 76 . Washington, DC : American Public Health Association .
  • Crill , P. M. and Martens , C. S. 1987 . Biogeochemical cycling in an organic‐rich coastal marine basin. 6. Temporal and spacial variations in sulfate reduction rates . Geochim. Cosmochim. Acta , 51 : 1175 – 1186 .
  • Gross , M. A. , Formica , S. J. , Gandy , L. C. and Hestir , J. 1993 . “ A comparison of local waste materials for sulfate‐reducing wetlands substrate ” . In Constructed wetlands for water quality improvement , Edited by: Moshiri , G. A. 179 – 185 . Ann Arbor, MI : Lewis .
  • Gusek , J. J. 1995 . Passive‐treatment of acid rock drainage: What is the potential bottom line? . Mining Eng. , March : 250 – 253 .
  • Hammer , D. A. 1989 . Constructed wetlands for wastewater treatment. , Chelsea, MI : Lewis .
  • Hedin , R. S. , Hyman , D. M. and Hammack , R. W. 1988 . “ Implications of sulfate‐reduction and pyrite formation processes for water quality in a constructed wetland: preliminary observations ” . In Mine drainage and surface mine reclamation vol. 1, Mine water and mine waste , Bureau of Mines IC 9813 382 – 388 . Washington, D.C. : U.S. Department of the Interior .
  • Herlihy , A. T. and Mills , A. L. 1985 . Sulfate reduction in freshwater sediments receiving acid mine drainage . Appl. Environ. Microbiol. , 49 : 179 – 186 .
  • Hines , M. E. and Lyons , W. B. 1982 . Biogeochemistry of nearshore Bermuda sediments. I. Sulfate reduction rates and nutrient generation . Mar. Ecol. Progr. Ser. , 8 : 87 – 94 .
  • Howard , E. A. , Emerick , J. C. and Wildeman , T. R. 1989 . “ The construction, design, and initial operation of a research site for passive mine drainage treatment in Idaho Springs, Colorado ” . In Constructed wetlands for wastewater treatment , Edited by: Hammer , D. A. 761 – 764 . Chelsea, MI : Lewis .
  • Howarth , R. W. and Jorgcnsen , B. B. 1984 . Formation of pyrite and elemental sulfur in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short‐term 35S sulfate reduction measurements . Geochim. Cosmochim. Acta , 48 : 1807 – 1818 .
  • Howarth , R. W. and Teal , J. M. 1979 . Sulfate reduction in a New England salt marsh . Limnol. Oceanogr. , 24 : 999 – 1013 .
  • Jorgensen , B. B. 1978 . A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments . Geomicrobiol. J. , 1 (1) : 11 – 63 .
  • Jorgensen , B. B. and Fenchel , T. 1974 . The sulfur cycle of a marine sediment model system . Mar. Biol. , 24 : 189 – 201 .
  • Kelly , C. A. and Rudd , J. M. 1984 . Epilimnetic sulfate reduction and its relationship to lake acidification . Biogeochemistry , 1 : 63 – 77 .
  • Lovley , D. R. , Dwyer , D. F. and Klug , M. J. 1982 . Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments . Appl. Environ. Microbiol. , 43 : 1373 – 1379 .
  • Machemer , S. D. and Wildeman , T. R. 1992 . Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland . J. Contam. Hydrol. , 9 : 115 – 131 .
  • Machemer , S. D. , Reynolds , J. S. , Laudon , L. S. and Wildeman , T. R. 1993 . Balance of S in a constructed wetland built to treat acid mine drainage, Idaho Springs, Colorado, U.S.A. . Appl. Geochem. , 8 : 587 – 603 .
  • Moshiri , G. A. 1993 . Constructed wetlands for water quality improvement. , Ann Arbor, MI : Lewis .
  • Odom , J. M. and Singleton , R. , eds. 1993 . The sulfate‐reducing bacteria: Contemporary perspectives. , New York : Springer‐Verlag .
  • Oremland , R. S. and Silverman , M. P. 1979 . Microbial sulfate reduction measured by an automated impedance technique . Geomicrobiol. J. , 1 (4) : 355 – 372 .
  • Postgate , J. R. 1984 . The sulphate‐reducing bacteria. , New York : Cambridge University Press .
  • Reynolds , J. R. 1992 . Determination of the rate of sulfide production by sulfate‐reducing bacteria at the Big Five wetland , Golden, CO : Colorado School of Mines . Masters thesis, T‐4163
  • Skyring , G. W. 1987 . Sulfate reduction in coastal ecosystems . Geomicrobiol. J. , 5 : 295 – 375 .
  • Smith , R. L. and Klug , M. J. 1981 . Reduction of sulfur compounds in the sediments of a eutrophic lake basin . Appl. Environ. Microbiol. , 41 : 1230 – 1237 .
  • Smith , R. L. and Oremland , R. S. 1987 . Big Soda Lake (Nevada). 2. Pelagic sulfate reduction . Limnol. Oceanogr. , 32 : 794 – 803 .
  • Updegraff , D. M. and Wren , G. B. 1954 . The release of oil from oil‐bearing materials by sulfate‐reducing bacteria . Appl. Microbiol. , 2 : 309 – 322 .
  • Westermann , P. and Ahring , B. K. 1987 . Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp . Appl. Environ. Microbiol. , 53 : 2554 – 2559 .
  • Westlich , J. T. and Berner , R. A. 1984 . The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested . Limnol. Oceanogr. , 29 (2) : 236 – 249 .
  • Wildeman , T. R. , Oliver , T. and Reynolds , J. S. Quality control on analyses of mine drainage samples: Comparison between two laboratories . 33rd Annu. Rocky Mountain Conf. Analytical Chemistry . August , Denver, CO.
  • Yavitt , J. B. and Lang , G. E. 1990 . Methane production in contrasting wetland sites: Response to organic‐chemical components of peat and to sulfate reduction . Geomicrobiol. J. , 8 : 27 – 46 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.