281
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading

, , &
Pages 1184-1199 | Received 19 Jan 2017, Accepted 02 Mar 2017, Published online: 05 Apr 2017

References

  • M. Zidi, A. Tounsi, M. S. A. Houari, and E. A. Adda, Bedia, and O. A. Beg, Bending Analysis of FGM Plates under Hygro-Thermo-Mechanical Loading Using a Four Variable Refined Plate Theory, Aerosp. Sci. Technol., vol. 34, pp. 24–34, 2014.
  • V. Birman and L. Byrd, Modeling and Analysis of Functionally Graded Materials and Structures, Appl. Mech. Rev., vol. 60, pp. 195–216, 2007.
  • A. M. Zenkour and N. A. Alghamdi, Bending Analysis of Functionally Graded Sandwich Plates under the Effect of Mechanical and Thermal Loads, Mech. Adv. Mater. Struct., vol. 17, pp. 419–432, 2010.
  • F. Z. Taibi, S. Benyoucef, A. Tounsi, and R. Bachir, Bouiadjra, E. A. Adda Bedia, and S. Mahmoud, A Simple Shear Deformation Theory for Thermo-Mechanical Behaviour of Functionally Graded Sandwich Plates on Elastic Foundations, J. Sandw. Struct. Mater., vol. 17, pp. 99–129, 2014.
  • S. Brischetto, R. Leetsch, E. Carrera, T. Wallmersperger, and B. Kroplin, Thermo-Mechanical Bending of Functionally Graded Plates, J. Thermal Stresses, vol. 31, pp. 286–308, 2008.
  • M. E. Golmakani and M. Kadkhodayan, Nonlinear Bending Analysis of Annular FGM Plates Using Higher-Order Shear Deformation Plate Theories, Compos. Struct., vol. 93, pp. 973–982, 2011.
  • T. K. Nguyen, A Higher-Order Hyperbolic Shear Deformation Plate Model for Analysis of Functionally Graded Materials, Int. J. Mech. Mater. Des., vol. 11, pp. 203–219, 2015.
  • D. G. Zhang, Thermal Post-Buckling Analysis of FGM Elliptical Plates based on High Order Shear Deformation Theory, Mech. Adv. Mater. Struct., vol. 49, pp. 283–293, 2014.
  • J. N. Reddy and C. Chin, Thermomechanical Analysis of Functionally Graded Cylinders and Plates, J. Thermal Stresses, vol. 21, pp. 593–626, 1998.
  • J. Woo and S. A. Meguid, Nonlinear Analysis of Functionally Graded Plates and Shallow Shells, Int. J. Solids Struct., vol. 38, pp. 7409–7421, 2001.
  • J. Yang and H. S. Shen, Nonlinear Bending Analysis of Shear Deformable Functionally Graded Plates Subjected to Thermo-Mechanical Loads under Various Boundary Conditions, Compos. Part B Eng., vol. 34, pp. 103–115, 2003.
  • L. S. Ma and T. J. Wang, Nonlinear Bending and Post-Buckling of a Functionally Graded Circular Plate under Mechanical and Thermal Loadings, Int. J. Solids Struct., vol. 40, pp. 3311–3330, 2003.
  • J. A. T. Barbosa and A. J. M. Ferreira, Geometrically Nonlinear Analysis of Functionally Graded Plates and Shells, Mech. Adv. Mater. Struct., vol. 17, pp. 40–48, 2010.
  • K. R. Jagtap, A. Lal, and B. N. Singh, Stochastic Nonlinear Bending Response of Functionally Graded Material Plate with Random System Properties in Thermal Environment, Int. J. Mech. Mater. Des., vol. 8, pp. 149–167, 2012.
  • Y. Kiani, A. H. Akbarzadeh, Z. T. Chen, and M. R. Eslami, Static and Dynamic Analysis of an FGM Doubly Curved Panel Resting on the Pasternak-Type Elastic Foundation, Compos. Struct., vol. 94, pp. 2474–2484, 2012.
  • M. E. Golmakani and M. Kadkhodayan, An Investigation into the Thermoelastic Analysis of Circular and Annular Functionally Graded Material Plates, Mech. Adv. Mater. Struct., vol. 21, pp. 1–13, 2014.
  • H. S. Shen, Functionally Graded Materials—Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton/New York, 2009.
  • K. S. Na and J. H. Kim, Nonlinear Bending Response of Functionally Graded Plates under Thermal Loads, J. Thermal Stresses, vol. 29, pp. 245–261, 2006.
  • P. Malekzadeh and N. Safaeian, Hamzehkolaei, Temperature-Dependent Discrete Layer-Differential Quadrature Bending Analysis of the Multi-Layered Functionally Graded Annular Plates Rested on Two-Parameter Elastic Foundation, Mech. Adv. Mater. Struct., vol. 23, pp. 43–58, 2016.
  • V. T. A. Thi and N. D. Duc, Nonlinear Response of a Shear Deformable S-FGM Shallow Spherical Shell with Ceramic-Metal-Ceramic Layers Resting on an Elastic Foundation in a Thermal Environment, Mech. Adv. Mater. Struct., vol. 23, no. 8, pp. 926–934, 2016.
  • E. Bagherizadeh, Y. Kiani, and M. R. Eslami, Thermal Buckling of Functionally Graded Material Cylindrical Shells on Elastic Foundation, AIAA J., vol. 50, no. 2, pp. 500–503, 2012.
  • H. S. Shen, Nonlinear Thermal Bending Response of FGM Plates due to Heat Conduction, Compos. Part B Eng., vol. 38, pp. 201–215, 2007.
  • X. Zhao and K. M. Liew, Geometrically Nonlinear Analysis of Functionally Graded Shells, Int. J. Mech. Sci., vol. 51, pp. 131–144, 2009.
  • M. T. Piovan and S. P. MacHado, Thermoelastic Dynamic Stability of Thin-Walled Beams with Graded Material Properties, Thin-Walled Struct., vol. 49, pp. 437–447, 2011.
  • Y. Kiani, M. Shakeri, and M. R. Eslami, Thermoelastic Free Vibration and Dynamic Behaviour of an FGM Doubly Curved Panel via the Analytical Hybrid Laplace–Fourier Transformation, Acta Mech., vol. 223, no. 6, pp. 1199–1218, 2012.
  • H. S. Shen, Nonlinear Thermal Bending of FGM Cylindrical Panels Resting on Elastic Foundations under Heat Conduction, Compos. Struct., vol. 113, pp. 216–224, 2014.
  • H. S. Shen, Postbuckling of FGM Cylindrical Panels Resting on Elastic Foundations Subjected to Lateral Pressure under Heat Conduction, Int. J. Mech. Sci., vol. 89, pp. 453–461, 2014.
  • H. S. Shen and H. Wang, Thermal Postbuckling of FGM Cylindrical Panels Resting on Elastic Foundations, Aerosp. Sci. Technol., vol. 38, 9–19, 2014.
  • H. Van, Tung and N. D. Duc, Nonlinear Response of Shear Deformable FGM Curved Panels Resting on Elastic Foundations and Subjected to Mechanical and Thermal Loading Conditions, Appl. Math. Model., vol. 38, pp. 2848–2866, 2014.
  • H. S. Shen and H. Wang, Nonlinear Bending and Postbuckling of FGM Cylindrical Panels Subjected to Combined Loadings and Resting on Elastic Foundations in Thermal Environments, Eur. J. Mech. A/Solids, vol. 49, pp. 49–59, 2015.
  • M. Akbari, Y. Kiani, and M. R. Eslami, Thermal Buckling of Temperature-Dependent FGM Conical Shells with Arbitrary Edge Supports, Acta Mech., vol. 226, no. 3, pp. 897–915, 2015.
  • C. S. Chen, F. H. Liu, and W. R. Chen, Dynamic Characteristics of Functionally Graded Material Sandwich Plates in Thermal Environments, Mech. Adv. Mater. Struct., vol. 24, pp. 157–167, 2017.
  • V. R. Kar and S. K. Panda, Geometrical Nonlinear Flexural Analysis of Shear Deformable Functionally Graded Curved Panel under Thermo-Mechanical Load with TD and TID Properties, J. Press. Ves. Tech. Trans. ASME, vol. 138, pp. 061206–13, 2016.
  • L. J. Gibson, M. F. Ashby, G. N. Karam, U. Wegst, and H. R. Shercliff, Mechanical Properties of Natural Materials. II. Microstructures for Mechanical Efficiency. Proc.R. Soc. A, vol. 450, pp. 141–162, 1995.
  • Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Press, Dordrecht, Netherlands, 1999.
  • R. Javaheri and M. R. Eslami, Thermal Buckling of Functionally Graded Plates, AIAA J., vol. 40, pp. 162–169, 2002.
  • J. N. Reddy, Mechanics of Laminated Composite: Plates and Shells—Theory and Analysis, CRC Press, Boca Raton, FL, 2004.
  • J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Cambridge, UK, 2004.
  • V. R. Kar and S. K. Panda, Nonlinear Free Vibration of Functionally Graded Doubly Curved Shear Deformable Panels using Finite Element Method, J. Vib. Control, vol. 22, pp. 1935–1949, 2016.
  • X. L. Huang and H. S. Shen, Nonlinear Vibration and Dynamic Response of Functionally Graded Plates in Thermal Environments, Int. J. Solids Struct., vol. 41, pp. 2403–2427, 2004.
  • X. Zhao, Y. Y. Lee, and K. M. Liew, Thermoelastic and Vibration Analysis of Functionally Graded Cylindrical Shells, Int. J. Mech. Sci., vol. 51, no. 9, pp. 694–707, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.