201
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Shock-induced nonlocal coupled thermoelasticity analysis (with energy dissipation) in a MEMS/NEMS beam resonator based on Green–Naghdi theory: A meshless implementation considering small-scale effects

Pages 1134-1151 | Received 18 Dec 2016, Accepted 06 Apr 2017, Published online: 09 May 2017

  • W. C. Tang, T. C. H. Nguyen, M. W. Judy, and R. T. Howe, Electrostatic-comb Drive of Lateral Polysilicon Resonators, Sens. Actuators A, vol. 21, pp. 328–331, 1990.
  • H. A. C. Tilmans, M. Blwenspoek, and J. H. J. Fluitman, Micro Resonator Force Gauges, Sens. Actuators A, vol. 30, pp. 35–53, 1992.
  • R. E. Mihailovich and N. C. MacDonald, Dissipation Measurements of Vacuum Operated Single-crystal Silicon Micro Resonators, Sens. Actuators A, vol. 50, pp. 199–207, 1995.
  • O. Gottlieb and A. R. Champneys, Global Bifurcations of Nonlinear Thermoelastic Microbeams Subject to Electrodynamic Actuation, in G. Rega and F. Vestroni (eds.), IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, Solid Mechanics and its Applications, Vol. 122, pp. 117–126, Springer, Netherlands, 2005.
  • M. Younis, Microbeams, in R. T. Howe and A. J. Ricco (eds.), MEMS Linear and Nonlinear Statics and Dynamics, Microsystems, Vol. 20, pp. 251–357, Springer US, 2011.
  • Y. Li, S. A. Meguid, Y. Fu, and D. Xu, Unified Nonlinear Quasistatic and Dynamic Analysis of RF-MEMS Switches, Acta Mech., vol. 224, no. 8, pp. 1741–1755, 2013.
  • F. E. H. Tay, D. G. Guoa, L. Xua, M. N. Nyana, and K. L. Yapa, MEMS Wear-biomonitoring System for Remote Vital Signs Monitoring, J. Franklin Inst., vol. 346, no. 6, pp. 531–542, 2009.
  • A. Saeedi Vahdat, and G. Rezazadeh, Effects of Axial and Residual Stresses on Thermoelastic Damping in Capacitive Micro-Beam Resonators, J. Franklin Inst., vol. 348, no. 4, pp. 622–639, 2011.
  • W.-C. Chuang, H.-L. Lee, P.-Z. Chang, and Y.-C. Hu, Review on the Modeling of Electrostatic MEMS, Sensors, vol. 10, no. 6, pp. 6149–6171, 2010.
  • H. W. Lord and Y. A. Shulman, Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids, vol. 15, pp. 299–309, 1967.
  • A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, vol. 2, pp. 1–7, 1972.
  • A. E. Green and P. M. Naghdi, A Re-examination of the Basic Postulates of Thermomechanics, Proc. Roy. Soc. Lond. Ser. A, vol. 432, pp. 171–194, 1991.
  • A. E. Green and P. M. Naghdi, On Undamped Heat Waves in an Elastic Solid, J. Thermal Stresses, vol. 15, pp. 253–264, 1992.
  • A. E. Green and P. M. Naghdi, Thermoelasticity Without Energy Dissipation, J. Elasticity, vol. 31, pp. 189–208, 1993.
  • C. Zener, Internal Friction in Solids I: Theory of Internal Friction in Reeds, Phys. Rev., vol. 52, pp. 230–235, 1937.
  • C. Zener, Internal Friction in Solids II: General Theory of Thermoelastic Internal Friction, Phys. Rev., vol. 53, pp. 90–99, 1938.
  • R. Lifshitz and M. L. Roukes, Thermoelastic Damping in Micro- and Nano Mechanical Systems, Phys. Rev. B, vol. 61, pp. 5600–5609, 2000.
  • A. H. Nayfeh and M. I. Younis, Modeling and Simulations of Thermoelastic Damping in Microplates, J. Micromech. Microeng., vol. 14, no. 12, pp. 1711–1717, 2004.
  • A. H. Nayfeh, M. I. Younis, and E. M. Abdel-Rahman, Reduced-order Models for MEMS Applications, Nonlin. Dynamics, vol. 41, no. 1–3, pp. 211–236, 2005.
  • A. H. Nayfeh and M. I. Younis, A Model for Thermoelastic Damping in Microplates, NSTI-Nanotech., vol. 2, pp. 255–258, 2004.
  • B. H. Houston, D. M. Photiadis, J. F. Vignola, M. H. Marcus, X. Liu, D. Czaplewski, L. Sekaric, J. Butler, P. Pehrsson, and J. A. Bucaro, Loss Due to Transverse Thermoelastic Currents in Microscale Resonators, Mater. Sci. Eng. A, vol. 370, no. 1–2, pp. 407–411, 2004.
  • F. L. Guo and G. A. Rogerson, Thermoelastic Coupling Effect on a Micro-machined Beam Resonator, Mech. Res. Commun., vol. 30, no. 6, pp. 513–518, 2003.
  • J. Choi, M. Cho, and J. Rhim, Efficient Prediction of the Quality Factors of Micromechanical Resonators, J. Sound Vibrat., vol. 329, no. 1, pp. 84–95, 2010.
  • M. Zamanian and S. E. Khadem, Analysis of Thermoelastic Damping in Microresonators by Considering the Stretching Effect, Int. J. Mech. Sci., vol. 52, no. 10, pp. 1366–1375, 2010.
  • A. S. Vahdat and G. Rezazadeh, Effects of Aaxial and Residual Stresses on Thermoelastic Damping in Capacitive Micro-beam Resonators, J. Franklin Inst., vol. 348, no. 4, pp. 622–639, 2011.
  • Y. Sun, D. Fang, M. Saka, and A. K. Soh, Laser-induced Vibrations of Micro-beams under Different Boundary Conditions, Int. J. Solids Struct., vol. 45, no. 7–8, pp. 1993–2013, 2008.
  • K. A. Elsibai and H. M. Youssef, State-space Approach to Vibration of Gold Nano-beam Induced by Ramp Type Heating without Energy Dissipation in Femtoseconds Scale, J. Thermal Stresses, vol. 34, no. 3, pp. 244–263, 2011.
  • I. A. Abbas, A GN Model for Thermoelastic Interaction in a Microscale Beam Subjected to a Moving Heat Source, Acta Mech., vol. 226, pp. 2527–2536, 2015.
  • A. C. Eringen, Theory of Nonlocal Thermoelasticity, Int. J. Eng. Sci., vol. 12, no. 12, pp. 1063–1077, 1974.
  • J. N. Reddy, Nonlocal Theories for Bending, Buckling and Vibration of Beams, Int. J. Eng. Sci., vol. 45, pp. 288–307, 2007.
  • C. M. Wang, Y. Y. Zhang, and X. Q. He, Vibration of Nonlocal Timoshenko Beams, Nanotechnology, vol. 18, 105401, 2007.
  • S. K. Park and X.-L. Gao, Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory, J. Micromech. Microeng., vol. 16, pp. 2355–2359, 2006.
  • K. Kiani, Thermo-mechanical Analysis of Functionally Graded Plate-like Nanorotors: A Surface Elasticity Model, Int. J. Mech. Sci., vol. 106, pp. 39–49, 2016.
  • G. Rezazadeh, A. Vahdat, S. Tayefeh-rezaei, and C. Cetinkaya, Thermoelastic Damping in a Micro-beam Resonator Using Modified Couple Stress Theory, Acta Mech., vol. 223, no. 6, pp. 1137–1152, 2012.
  • E. Taati and M. Molaei Najafabadi, and H. Basirat Tabrizi, Size-dependent Generalized Thermoelasticity Model for Timoshenko Microbeams, Acta Mech., vol. 225, no. 7, pp. 1823–1842, 2013.
  • S. M. Lin, Analytical Solutions for Thermoelastic Vibrations of Beam Resonators with Viscous Damping in Non-Fourier Model, Int. J. Mech. Sci., vol. 87, pp. 26–35, 2014.
  • A. M. Zenkour, A. E. Abouelregal, K. A. Alnefaie, N. H. Abu-Hamdeh, and E. C. Aifantis, A Refined Nonlocal Thermoelasticity Theory for the Vibration of Nanobeams Induced by Ramp-type Heating, Appl. Math. Comput., vol. 248, pp. 169–183, 2014.
  • Y. J. Yu, X. G. Tian, and X. R. Liu, Size-dependent Generalized Thermoelasticity Using Eringen’s Nonlocal Model, Eur. J. Mech. A Solids, vol. 51, pp. 96–106, 2015.
  • D. V. Parayil, S. S. Kulkarni, and D. N. Pawaskar, Analytical and Numerical Solutions for Thick Beams with Thermoelastic Damping, Int. J. Mech. Sci., vol. 94–95, pp. 10–19, 2015.
  • Z. Y. Zhong, W. M. Zhang, G. Meng, and M. Y. Wang, Thermoelastic Damping in the Size-dependent Microplate Resonators Based on Modified Couple Stress Theory, J. Microelectromech. Syst., vol. 24, pp. 431–445, 2015.
  • M. Rezazadeh, M. Tahani, and S. M. Hosseini, Thermoelastic Damping in a Nano-beam Resonator as NEMS Based on the Type III of Green–Naghdi Theory (with Energy Dissipation), Int. J. Mech. Sci., vol. 92, pp. 304–311, 2015.
  • Y. J. Yu, Z. N. Xue, C. L. Li, and X. G. Tian, Buckling of Nanobeams Under Nonuniform Temperature Based on Nonlocal Thermoelasticity, Compos. Struct., vol. 146, pp. 108–113, 2016.
  • S. T. Hossain, S. McWilliam, and A. A. Popov, An Investigation on Thermoelastic Damping of High-Q Ring Resonators, Int. J. Mech. Sci., vol. 106, pp. 209–219, 2016.
  • H. Zhang, T. Kim, G. Choi, and H. H. Cho, Thermoelastic Damping in Micro- and Nanomechanical Beam Resonators Considering Size Effects, Int. J. Heat Mass Transfer, vol. 103, pp. 783–790, 2016.
  • E. Kazemnia, S. M. Hosseini, and M. Tahani, Thermoelastic Damping Analysis in a Micro Beam Resonator (MEMS) Based on Lord–Shulman Theory of Coupled Thermoelasticity Using an Analytical Method, Appl. Math. Model., vol. 40, pp. 3164–3174, 2016.
  • S. M. Hosseini, Shock-induced Two Dimensional Coupled Non-Fickian Diffusion–Elasticity Analysis Using Meshless Generalized Finite Difference (GFD) Method, Eng. Anal. Boundary Elements, vol. 61, pp. 232–240, 2015.
  • S. M. Hosseini, Application of a Hybrid Mesh-free Method for Shock-induced Thermoelastic Wave Propagation Analysis in a Layered Functionally Graded Thick Hollow Cylinder with Nonlinear Grading Patterns, Eng. Anal. Boundary Elements, vol. 43, pp. 56–66, 2014.
  • S. M. Hosseini, Application of a Hybrid Mesh-free Method Based on Generalized Finite Difference (GFD) Method for Natural Frequency Analysis of Functionally Graded Nanocomposite Cylinders Reinforced by Carbon Nanotubes, Comput. Model. Eng. Sci., vol. 95, pp. 1–29, 2013.
  • K. Kiani, Free Vibrations of Elastically Embedded Stocky Single-walled Carbon Nanotubes Acted Upon by a Longitudinally Varying Magnetic Field, Meccanica, vol. 50, pp. 3041–3067, 2015.
  • J. J. Benito, F. Urena, and L. Gavete, Solving Parabolic and Hyperbolic Equations by the Generalized Finite Difference Method, J. Comput. Appl. Math., vol. 209, pp. 208–233, 2007.
  • J. J. Benito, F. Urena, L. Gavete, E. Salete, and A. Muelas, A GFDM with PML for Seismic Wave Equations in Heterogeneous Media, J. Comput. Appl. Math., vol. 252, pp. 40–51, 2013.
  • L. Gavete, F. Urena, J. J. Benito, and E. Salete, A Note on the Dynamic Analysis Using the Generalized Finite Difference Method, J. Comput. Appl. Math., vol. 252, pp. 132–147, 2013.
  • B. Dingfelder and J. A. C. Weideman, An Improved Talbot Method for Numerical Laplace Transform Inversion, Numer. Algorithms, vol. 68, no. 1, pp. 167–183, 2015.
  • R. B. Hetnarski and M. R. Eslami, Thermal Stresses - Advanced Theory and Applications, Springer, Dordrecht, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.