106
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Thermomechanical nonlinear analysis of axially compressed carbon nanotube-reinforced composite cylindrical panels resting on elastic foundations with tangentially restrained edges

&
Pages 418-438 | Received 09 Jun 2017, Accepted 20 Nov 2017, Published online: 16 Jan 2018

References

  • E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: A review,” Compos. Sci. Techol., vol. 61, pp. 1899–1912, 2001. DOI:10.1016/s0266-3538(01)00094-x.
  • E. T. Thostenson, C. Li, and T. W. Chou, “Nanocomposites in context,” Compos. Sci. Technol., vol. 65, pp. 491–516, 2005. DOI:10.1016/j.compscitech.2004.11.003.
  • J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon, vol. 44, pp. 1624–1652, 2006. DOI:10.1016/j.carbon.2006.02.038.
  • O. Gohardani, M. C. Elola, and C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences, Progr. Aerosp. Sci., vol. 70, pp. 42–68, 2014. DOI:10.1016/j.paerosci.2014.05.002.
  • H. S. Shen, Postbuckling analysis of axially loaded functionally graded cylindrical panels in thermal environments, Int. J. Solids Struct., vol. 39, pp. 5991–6010, 2002. DOI:10.1016/s0020-7683(02)00479-1.
  • N. D. Duc, and H. V. Tung, “Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression,” Comput. Mater. Sci., vol. 49, pp. 313–316, 2010. DOI:10.1016/j.commatsci.2009.12.030.
  • H. V. Tung, and N. D. Duc, “Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions,” Appl. Math. Modell., vol. 38, pp. 2848–2866, 2014. DOI:10.1016/j.apm.2013.11.015.
  • H. V. Tung, “Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic foundations,” Compos. Struct., vol. 100, pp. 532–541, 2013. DOI:10.1016/j.compstruct.2012.12.051.
  • H. S. Shen, “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments,” Compos. Struct., vol. 91, pp. 9–19, 2009. DOI:10.1016/j.compstruct.2009.04.026.
  • Z. X. Lei, K. M. Liew, and J. L. Yu, “Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method,” Compos. Struct., vol. 98, pp. 160–168, 2013. DOI:10.1016/j.compstruct.2012.11.006.
  • L. W. Zhang, Z. X. Lei, and K. M. Liew, “Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach,” Compos. Part B, vol. 75, pp. 36–46, 2015. DOI:10.1016/j.compositesb.2015.01.033.
  • L. W. Zhang, Z. X. Lei, and K. M. Liew, “An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations,” Eng. Anal. Bound. Elem., vol. 58, pp. 7–17, 2015. DOI:10.1016/j.enganabound.2015.03.004.
  • Z. X. Lei, L. W. Zhang, and K. M. Liew, “Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach,” Appl. Math. Comput., vol. 266, pp. 773–791, 2015. DOI:10.1016/j.amc.2015.06.002.
  • N. Wattanasakulpong, and A. Chaikittiratana, “Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation,” Appl. Math. Modell., vol. 39, pp. 5459–5472, 2015. DOI:10.1016/j.apm.2014.12.058.
  • M. Wang, Z. M. Li, and P. Qiao, “Semi-analytical Solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates,” Compos. Struct., vol. 144, pp. 33–43, 2016. DOI:10.1016/j.compstruct.2016.02.025.
  • S. Jafari Mehrabadi, B. Sobhani Aragh, V. Khoshkhahesh, and A. Taherpour, “Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes,” Compos. Part B, vol. 43, pp. 2031–2040, 2012. DOI:10.1016/j.compositesb.2012.01.067.
  • H. S. Shen, and C. L. Zhang, “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates,” Mater. Des., vol. 31, pp. 3403–3411, 2010. DOI:10.1016/j.matdes.2010.01.048.
  • L. W. Zhang, and K. M. Liew, “Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on pasternak foundations using an element-free approach,” Compos. Struct., vol. 138, pp. 40–51, 2016. DOI:10.1016/j.compstruct.2015.11.031.
  • L. W. Zhang, K. M. Liew, and J. N. Reddy, “Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression,” Comput. Methods Appl. Mech. Eng., vol. 298, pp. 1–28, 2016. DOI:10.1016/j.cma.2015.09.016.
  • A. Alibeigloo, “Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers,” Compos. Part B, vol. 98, pp. 225–243, 2016. DOI:10.1016/j.compositesb.2016.05.010.
  • A. Alibeigloo, “Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load,” Compos. Part B, vol. 87, pp. 214–226, 2016. DOI:10.1016/j.compositesb.2015.09.060.
  • A. Alibeigloo, “Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity,” Eur. J. Mech. A/Solids, vol. 44, pp. 104–115, 2014. DOI:10.1016/j.euromechsol.2013.10.002.
  • L. W. Zhang, Z. X. Lei, K. M. Liew, and J. L. Yu, “Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels,” Compos. Struct., vol. 111, pp. 205–212, 2014. DOI:10.1016/j.compstruct.2013.12.035.
  • M. Mirzaei, and Y. Kiani, “Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels,” Compos. Struct., vol. 142, pp. 45–56, 2016. DOI:10.1016/j.compstruct.2015.12.071.
  • M. Nasihatgozar, V. Daghigh, M. Eskandari, K. Nikbin, and A. Simoneau, “Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes,” Int. J. Mech. Sci., vol. 107, pp. 69–79, 2016. DOI:10.1016/j.ijmecsci.2016.01.010.
  • E. M. Garcia, L. T. Rodriguez, R. T. Castro, and S. Andres, “Buckling analysis of functionally graded carbon nanotube reinforced curved panels under axial compression and shear,” Compos. Part B, vol. 108, pp. 243–256, 2017. DOI:10.1016/j.compositesb.2016.10.002.
  • H. S. Shen, “Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments,” Eng. Struct., vol. 122, pp. 174–183, 2016. DOI:10.1016/j.engstruct.2016.05.004.
  • H. S. Shen, and Y. Xiang, “Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments,” Compos. Part B, vol. 67, pp. 50–61, 2014. DOI:10.1016/j.compositesb.2014.06.020.
  • H. S. Shen, and Y. Xiang, “Nonlinear response of nanotube-reinforced composite cylindrical panels subjected to combined loadings and resting on elastic foundations,” Compos. Struct., vol. 131, pp. 939–950, 2015. DOI:10.1016/j.compstruct.2015.06.042.
  • H. S. Shen, and Y. Xiang, “Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations,” Compos. Struct., vol. 123, pp. 383–392, 2015. DOI:10.1016/j.compositesb.2014.06.020.
  • K. M. Liew, Z. X. Lei, J. L. Yu, and L. W. Zhang, “Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach,” Comput. Methods Appl. Mech. Eng., vol. 268, pp. 1–17, 2014. DOI:10.1016/j.cma.2013.09.001.
  • L. Librescu, W. Lin, M. P. Nemeth, and J. H. Starnes Jr, “Thermomechanical postbuckling of geometrically imperfect flat and curved panels taking into account tangential edge constraints,” J. Thermal Stresses, vol. 18, pp. 465–482, 1995. DOI:10.1080/01495739508946314.
  • L. Librescu, and W. Lin, “Vibration of thermomechanically loaded flat and curved panels taking into account geometric imperfections and tangential edge restraints,” Int. J. Solids Struct., vol. 34, pp. 2161–2181, 1997. DOI:10.1016/s0020-7683(96)00025-x.
  • H. V. Tung, “Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints,” J. Thermal Stresses, vol. 40, pp. 641–663, 2017. DOI:10.1080/01495739.2016.1254577.
  • L. Librescu, S. Y. Oh, and O. Song, “Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability,” J. Thermal Stresses, vol. 28, pp. 649–712, 2005. DOI:10.1080/01495730590934038.
  • G. J. Simites, “Buckling and postbuckling of imperfect cylindrical shells: A review,” Appl. Mech. Rev., vol. 39, pp. 1517–1524, 1986.
  • L. Librescu, M. P. Nemeth, J. H. Starnes Jr, and W. Lin, “Nonlinear response of flat and curved panels subjected to thermomechanical loads,” J. Thermal Stresses, vol. 23, pp. 549–582, 2000. DOI:10.1080/01495730050143134.
  • Y. Han and J. Elliott, “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites,” Comput. Mater. Sci., vol. 39, pp. 315–323, 2007. DOI:10.1016/j.commatsci.2006.06.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.