166
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load

, ORCID Icon &
Pages 847-865 | Received 29 Nov 2017, Accepted 20 Dec 2017, Published online: 08 Feb 2018

References

  • L. S. Ma, and D. W. Lee, “A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading,” Compos. Struct., vol. 93, pp. 831–842, 2011. DOI:10.1016/j.compstruct.2010.07.011.
  • L. S. Ma, and D. W. Lee, “Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading,” Eur. J. Mech. A Solids, vol. 31, pp. 13–20, 2012. DOI:10.1016/j.euromechsol.2011.06.016.
  • S. E. Esfahani, Y. Kiani, and M. R. Eslami, “Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations,” Int. J. Mech. Sci., vol. 69, pp. 10–20, 2013. DOI:10.1016/j.ijmecsci.2013.01.007.
  • D. G. Zhang, “Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Compos. Struct., vol. 100, pp. 121–126, 2013. DOI:10.1016/j.compstruct.2012.12.024.
  • D. G. Zhang, “Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Meccanica, vol. 49, pp. 283–293, 2014. DOI:10.1007/s11012-013-9793-9.
  • H. S. Shen, and Z. X. Wang, “Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments,” Int. J. Mech. Sci., vol. 81, pp. 195–206, 2014. DOI:10.1016/j.ijmecsci.2014.02.020.
  • G. L. She, F. G. Yuan, and Y. R. Ren, “Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory,” Appl. Math. Model., vol. 47, pp. 340–357, 2017. DOI:10.1016/j.apm.2017.03.014.
  • J. Zhong, Y. Fu, X. Shao, and Y. Chen, “Thermal postbuckling analysis of functionally graded tubes based on a refined beam model,” Int. J. Mech. Sci., vol. 96, pp. 58–64, 2015. DOI:10.1016/j.ijmecsci.2015.03.019.
  • J. Zhong, Y. Fu, D. Wan, and Y. Li, “Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model,” Appl. Math. Model., vol. 40, pp. 1–14, 2016. DOI:doi.org/10.1016/j.apm.2016.03.031.
  • G. L. She, F. G. Yuan, and Y. R. Ren, “Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory,” Compos. Struct., vol. 165, pp. 74–82, 2017. DOI:10.1016/j.compstruct.2017.01.013.
  • H. Asgari, M. Bateni, Y. Kiani, and M. R. Eslami, “Non-linear thermo-elastic and buckling analysis of FGM shallow arches,” Compos. Struct., vol. 109, pp. 75–85, 2014. DOI:10.1016/j.compstruct.2013.10.045.
  • H. S. Shen, “Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties,” Int. J. Mech. Sci., vol. 49, pp. 466–478, 2007. DOI:10.1016/j.ijmecsci.2006.09.011.
  • D. G. Zhang, and Y. H. Zhou, “A theoretical analysis of FGM thin plates based on physical neutral surface,” Comput. Mater. Sci., vol. 44, pp. 716–720, 2008. DOI:10.1016/j.commatsci.2008.05.016.
  • Y. Kiani, and M. R. Eslami, “Nonlinear thermo-inertial stability of thin circular FGM plates,” J. Franklin Inst., vol. 351, pp. 1057–1073, 2014. DOI:10.1016/j.jfranklin.2013.09.013.
  • Y. Kiani, “Axisymmetric static and dynamics snap-through phenomena in a thermally postbuckled temperature-dependent FGM circular plate,” Int. J. Nonlinear Mech., vol. 89, pp. 1–13, 2017. DOI:10.1016/j.ijnonlinmec.2016.11.003.
  • S. P. Timoshenko, and S. Woinowsky-Krieger, Theory of Plates and Shells. New York: McGraw-Hill, 1959.
  • J. Woo, and S. A. Meguid, “Nonlinear analysis of functionally graded plates and shallow shells,” Int. J. Solids Struct., vol. 38, pp. 7409–7421, 2001. DOI:10.1016/s0020-7683(01)00048-8.
  • J. Woo, S. A. Meguid, and K. M. Liew, “Thermomechanical postbuckling analysis of functionally graded plates and shallow cylindrical shells,” Acta. Mech., vol. 165, pp. 99–115, 2003. DOI:10.1007/s00707-003-0035-4.
  • J. Woo, S. A. Meguid, J. C. Stranart, and K. M. Liew, “Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells,” Int. J. Mech. Sci., vol. 47, pp. 1147–1171, 2005. DOI:10.1016/j.ijmecsci.2005.04.008.
  • H. S. Shen, Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties,” Int. J. Solids Struct., vol. 41, pp. 1961–1974, 2004. DOI:10.1016/j.ijsolstr.2003.10.023.
  • H. S. Shen, “Thermal postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium,” J. Eng. Mech., vol. 94, pp. 372–383, 2009. DOI:10.1061/(asce)em.1943-7889.0000439.
  • N. D. Duc, and H. V. Tung, “Nonlinear response of pressure-loaded functionally graded cylindrical panels with temperature effects,” Compos. Struct., vol. 92, pp. 1664–1672, 2010. DOI:10.1016/j.compstruct.2009.11.033.
  • J. Yang, K. M. Liew, Y. F. Wu, and S. Kitipornchai, “Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties,” Int. J. Solids Struct., vol. 43, pp. 307–324, 2006. DOI:10.1016/j.ijsolstr.2005.04.001.
  • M. Cinefra, E. Carrera, S. Brischetto, S. Belouettar, “Thermo-mechanical analysis of functionally graded shells,” J. Thermal Stresses, vol. 33, pp. 942–963, 2010. DOI:10.1080/01495739.2010.482379.
  • E. Bagherizadeh, Y. Kiani, and M. R. Eslami, “Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation,” Compos. Struct., vol. 93, pp. 3063–3071, 2011. DOI:10.1016/j.compstruct.2011.04.022.
  • E. Bagherizadeh, Y. Kiani, M. R. Eslami, Thermal buckling of functionally graded material cylindrical shells on elastic foundation,” AIAA J., vol. 50, pp. 500–503, 2012. DOI:10.2514/1.j051120.
  • M. S. Boroujerdy, R. Naj, and Y. Kiani, “Buckling of heated temperature dependent FGM cylindrical shell surrounded by elastic medium,” J. Theor. Appl. Mech., vol. 52, pp. 869–881, 2014. DOI:10.15632/jtam-pl.52.4.869.
  • M. Akbari, Y. Kiani, and M. R. Eslami, “Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports,” Acta Mech., vol. 226, pp. 896–915, 2015. DOI:10.1007/s00707-014-1168-3.
  • V. R. Kar, and S. K. Panda, “Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method,” Compos. Struct., vol. 129, pp. 202–212, 2015. DOI:10.1016/j.compstruct.2015.04.006.
  • V. R. Kar, and S. K. Panda, “Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression,” Int. J. Mech. Sci., vol. 115, pp. 319–324, 2016. DOI:10.1016/j.ijmecsci.2016.07.014.
  • V. R. Kar, T. R. Mahapatra, and S. K. Panda, “Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels,” Compos. Struct., vol. 160, pp. 1236–1247, 2017. DOI:10.1016/j.compstruct.2016.10.125.
  • D. G. Zhang, “Nonlinear static analysis of FGM infinite cylindrical shallow shells based on physical neutral surface and high order shear deformation theory,” Appl. Math. Model., vol. 39, pp. 1587–1596, 2014. DOI:10.1016/j.apm.2014.09.023.
  • G. L. She, F. G. Yuan, and Y. R. Ren, “Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments,” Compos. Struct., vol. 170, pp. 111–121, 2017. DOI:10.1016/j.compstruct.2017.03.010.
  • J. N. Reddy, Theory and Analysis of Elastic Plates and Shells. Boca Raton: CRC Press, 2006.
  • E. Ventsel, and T. Krauthammer, Thin Plates and Shells Theory, Analysis, and Applications. New York: Marcel Dekker Inc, 2001.
  • R. B. Hetnarski, and M. R. Eslami, Thermal Stresses, Advanced Theory and Applications. Amsterdam: Springer Verlag, 2009.
  • H. S. Shen, Functionally Graded Materials Nonlinear Analysis of Plates and Shells. Boca Raton: CRC Press, 2009.
  • H. S. Shen, A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Singapore: John Wiley & Sons Inc., 2013.
  • J. N. Reddy, and C. D. Chin, “Thermoelastic analysis of functionally graded cylinders and plates,” J. Thermal Stresses, vol. 21, pp. 593–626, 1998.
  • N. D. Duc, P. H. Cong, and V. D. Quang, “Thermal stability of eccentrically stiffened FGM plate on elastic foundation based on Reddy’s third order shear deformation plate theory,” J. Thermal Stresses, vol. 39, pp. 772–794, 2016. DOI:10.1080/01495739.2016.1188638.
  • T. R. Mahapatra, V. R. Kar, S. K. Panda, and K. Mehar, Nonlinear thermoelastic deflection of temperature dependent FGM curved shallow shells under nonlinear thermal loading,” J. Thermal Stresses, vol. 40, pp. 1184–1199, 2017. DOI:10.1080/01495739.2017.1302788.
  • Y. Kiani, and M. R. Eslami, “Geometrically nonlinear rapid heating of temperature dependent circular FGM plates,” J. Thermal Stresses, vol. 37, pp. 1495–1518, 2014. DOI:10.1080/01495739.2017.1302788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.