159
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Thermoelastic interaction in functionally graded thick hollow cylinder with temperature-dependent properties

, , &
Pages 399-417 | Received 17 Sep 2016, Accepted 27 Dec 2017, Published online: 08 Feb 2018

References

  • S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials. London: Institute of MaterialsCommunications Ltd, 1998.
  • J. Aboudi, M. J. Pindera, and S. M. Arnold, “Thermo-inelastic response of functionally graded composites,” Int. J. Solids Struct., vol. 32, pp. 1675–1710, 1995. DOI:10.1016/0020-7683(94)00201-7.
  • R. C. Wetherhold, and S. S. Wang, “The use of functionally graded materials to eliminate or control thermal deformation,” Compos. Sci. Technol., vol. 56, pp. 1099–1104, 1996. DOI:10.1016/0266-3538(96)00075-9.
  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, pp. 240–253, 1956. DOI:10.1063/1.1722351.
  • Y. Obata, N. Noda, and T. Tsuji, “Steady thermal stresses in a functionally gradient material plate,” Trans. JSME Ser. A, vol. 58, pp. 1689–1695, 1992.
  • Y. Obata, and N. Noda, “Steady thermal stresses in a hollow circular and a hollow sphere of a functionally graded material,” J. Therm. Stresses, vol. 17, pp. 471–487, 1994.
  • Y. Tanigawa, “Some basic thermoelastic problems for nonhomogeneous structural materials,” Appl. Mech. Rev., vol. 48, pp. 287–300, 1995. DOI:10.1115/1.3005103.
  • J. N. Reddy, and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Therm. Stresses, vol. 21, pp. 593–626, 1998. DOI:10.1080/01495739808956165.
  • A. Bahtui, and M. R. Eslami, “Coupled thermoelasticity of functionally graded cylindrical shells,” Mech. Res. Commun., vol. 34, pp. 1–18, 2007. DOI:10.1016/j.mechrescom.2005.09.003.
  • Z. H. Jin, and R. C. Batra, “Some basic fracture mechanics concepts in functionally graded materials,” J. Mech. Phys. Solids, vol. 44, pp. 1221–1235, 1996. DOI:10.1016/0022-5096(96)00041-5.
  • L. F. Qian, and R. C. Batra, “Transient thermoelastic deformations of a thick functionally graded plate,” J. Therm. Stresses, vol. 27, pp. 705–740, 2004. DOI:10.1080/01495730490440145.
  • S. S. Vel, and R. C. Batra, “Three-dimensional analysis of transient thermal stresses in functionally graded plates,” Int. J. Solid Struct., vol. 40, pp. 7181–7196, 2003. DOI:10.1016/s0020-7683(03)00361-5.
  • K. Mitra, S. Kumar, A. Vddavarz, and M. K. Moallemi, “Experimental evidence of hyperbolic heat conduction in processed meat,” ASME J. Heat Trans., vol. 117, pp. 568–573, 1995. DOI:10.1115/1.2822615.
  • H. Herwig, and K. Beckert, “Experimental evidence about the controversy concerning Fourier and non-Fourier heat conduction in materials with a nonhomogeneous inner structure,” Heat Mass Transfer, vol. 36, pp. 387–392, 2000. DOI:10.1007/s002310000081.
  • H. W. Lord, and Y. A. Shulman, “A generalized dynamic theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, pp. 299–309, 1967.
  • A. E. Green, and K. A. Lindsay, “Thermoelasticity,” J. Elast., vol. 2, pp. 1–7, 1972. DOI:10.1007/bf00045689.
  • A. E. Green, and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elast., vol. 31, pp. 189–208, 1993. DOI:10.1007/bf00044969.
  • H. M. Youssef, “Theory of fractionally order generalized thermoelasticity,” J. Heat Trans., vol. 132, p. 061301–7, 2010. DOI:10.1115/1.4000705.
  • H. H. Sherief, A. M. A. El-Sayed, and A. M. Abd El-latief, Fractional order theory of thermoelasticity,” Int. J. Solids Struct., vol. 47, pp. 269–275, 2010.
  • Y. Z. Povstenko, “Fractional cattaneo-type equations and generalized thermoelasticity,” J. Therm. Stresses, vol. 34, pp. 97–114. DOI:01495739.2010.511931.
  • Y. Z. Wang, X. B. Zhang, and X. N. Song, “A generalized theory of thermoelasticity based on thermomass and its uniqueness theorem,” Acta Mech., vol. 225, pp. 797–808, 2014. DOI:10.1007/s00707-013-1001-4.
  • S. H. Mallik, and M. Kanoria, “Generalized thermoelastic functionally graded solid with a periodically varying heat source,” Int. J. Solids Struct., vol. 44, pp. 7633–7645, 2007. DOI:10.1016/j.ijsolstr.2007.05.001.
  • M. H. Babaei, and Z. T. Chen, “Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source,” Arch. Appl. Mech., vol. 80, pp. 803–813, 2010. DOI:10.1007/s00419-009-0342-x.
  • I. A. Abbas, “A problem on functional graded material under fractional order theory of thermoelasticity,” Theor. Appl. Fract. Mech., vol. 74, pp. 18–22, 2014. DOI:10.1016/j.tafmec.2014.05.005.
  • A. Bagri, and M. R. Eslami, “Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory,” Compos. Struct., vol. 83, pp. 168–179, 2008.
  • M. K. Ghosh, and M. Kanoria, “Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green–Lindsay theory,” Acta Mech., vol. 207, pp. 51–67, 2009. DOI:10.1007/s00707-008-0093-8.
  • T. Darabseh, N. Yilmaz, and M. Batineh, “Transient thermoelasticity analysis of functionally graded thick hollow cylinder based on Green–Lindsay model,” Int. J. Mech. Mater. Des., vol. 8, pp. 247–255, 2012. DOI:10.1007/s10999-012-9189-3.
  • I. A. Abbas, and A. M. Zenkour, “LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder,” Compos. Struct., vol. 96, pp. 89–96, 2013.
  • M. Kanoria, and M. K. Ghosh, “Study of dynamic response in a functionally graded spherically isotropic hollow sphere with temperature dependent elastic parameters,” J. Therm. Stresses, vol. 33, pp. 459–484, 2010. DOI:10.1080/01495731003738440.
  • I. A. Abbas, “Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties,” Mechanica, vol. 49, pp. 1687–1708, 2014.
  • T. Atarashi, and S. Minagawa, “Transient coupled-thermoelastic problem of heat conduction in a multilayered composite plate,” Int. J. Eng. Sci., vol. 30, pp. 1543–1550, 1992. DOI:10.1016/0020-7225(92)90164-c.
  • Z. N. Xue, Y. J. Yu, and X. G. Tian, “Transient responses of bi-layered structure based on generalized thermoelasticity: Interfacial conditions,” Int. J. Mech. Sci., vol. 99, pp. 179–186, 2015. DOI:10.1016/j.ijmecsci.2015.05.016.
  • K. Tanaka, Y. Tanaka, H. Watanabe, V. F. Poterasu, and Y. Sugano, “An improved solution to thermoelastic material design in functionally gradient materials: Scheme to reduce thermal stresses,” Comput. Methods Appl. Mech. Eng., vol. 109, pp. 377–389, 1993. DOI:10.1016/0045-7825(93)90088-f.
  • Y. Tanigawa, M. Matsumoto, and T. Akai, “Optimization of material composition to minimize thermal stresses in nonhomogeneous plate subjected to unsteady heat supply,” JSME Int. J. Ser. A, vol. 40, pp. 84–93, 1997. DOI:10.1299/jsmea1993.40.1_84.
  • D. Boussaa, “Optimization of temperature-dependent functionally graded material bodies,” Comput. Methods Appl. Mech. Eng., vol. 198, pp. 2827–2838, 2009. DOI:10.1016/j.cma.2009.02.013.
  • X. G. Tian, Y. P. Shen, C. Q. Chen, and T. H. He, “A direct finite element method study of generalized thermoelastic problems,” Int. J. Solids Struct., vol. 43, pp. 2050–2063, 2006. DOI:10.1016/j.ijsolstr.2005.06.071.
  • N. M. El-Maghraby, and H. M. Youssef, “State space approach to generalized thermoelastic problem with thermomechanical shock,” Appl. Math. Comput., vol. 156, pp. 577–586, 2004. DOI:10.1016/j.amc.2003.08.009.
  • I. A. Abbas, “Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties,” Comput. Math. Appl., vol. 68, pp. 2036–2056, 2014. DOI:10.1016/j.camwa.2014.09.016.
  • A. S. El-Karamany, and M. A. Ezzat, “Thermal shock problem in generalized thermoviscoelasticity under four theories,” Int. J. Eng. Sci., vol. 42, pp. 649–671, 2004. DOI:10.1016/j.ijengsci.2003.07.009.
  • T. H. He, and S. H. Shi, “Effect of temperature-dependent problems on thermoelastic problems with thermal relaxations,” Acta Mech. Solid. Sin., vol. 27, pp. 412–419, 2014.
  • M. Balla, “Analytical study of the thermal shock problem of a half-space with various thermoelastic models,” Acta Mech., vol. 89, pp. 73–92, 1991. DOI:10.1007/bf01171248.
  • H. H. Sherief, A. E. M. Elmisiery, and M. A. Elhagary, “Generalized thermoelastic problem for an infinite long hollow cylinder for short times,” J. Therm. Stresses, vol. 27, pp. 885–902, 2004. DOI:10.1080/01495730490498331.
  • N. Sarkar, “On the discontinuity solution of the Lord–Shulman model in generalized thermoelasticity,” Appl. Math. Comput., vol. 219, pp. 10245–10252, 2013.
  • Y. Z. Wang, X. B. Zhang, and X. N. Song, “A unified generalized thermoelasticity solution for the transient thermal shock problem,” Acta Mech., vol. 223, pp. 735–743, 2012. DOI:10.1007/s00707-011-0597-5.
  • Y. Z. Wang, X. B. Zhang, and D. Liu, “Asymptotic analysis of generalized thermoelasticity for axisymmetric plane strain problem with temperature-dependent material properties,” Int. J. Appl. Mech., vol. 5, pp. 1350023–20, 2013. DOI:10.1142/s1758825113500233.
  • Y. Touloukian, Thermophysical Properties of High Temperature Solid Materials: Elements. London: Macmillan, 1967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.