198
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of memory-dependent derivative in a fiber-reinforced plate under gravitational effect

, &
Pages 973-992 | Received 03 Oct 2017, Accepted 27 Feb 2018, Published online: 26 Mar 2018

References

  • A. Sur and M. Kanoria, “Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction,” Procedia Eng., vol. 127, pp. 605–612, 2015.
  • A. Sur and M. Kanoria, “Modeling of fibre-reinforced Magneto-thermoelastic plate with heat sources,” Procedia Eng., vol. 173, pp. 875–882, 2017.
  • A. Sur and M. Kanoria, “Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model,” Eur. J. Comput. Mech., vol. 23, pp. 179–198, 2014.
  • P. Das and M. Kanoria, “Study of finite thermal wavs in a magneto-thermo-elastic roatating medium,” J. Therm. Stresses, vol. 37, pp. 405–428, 2014.
  • P. Das, A. Kar, and M. Kanoria, “Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect,” J. Therm. Stresses, vol. 36, pp. 239–258, 2013.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, pp. 231–238, 2007.
  • S. Chakravorty, S. Ghosh, and A. Sur, “Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction,” Procedia Eng., vol. 173, pp. 851–858, 2017.
  • A. Sur and M. Kanoria, “Fractional order generalized thermoelastic functionally graded solid with variable material properties,” J. Solid Mech., vol. 6, pp. 54–69, 2014.
  • A. Sur and M. Kanoria, “Three dimensional thermoelastic problem under two-temperature theory,” Int. J. Comput. Methods, vol. 14, no. 2, pp. 1750030– (1–17), 2016. DOI:10.1142/S021987621750030X.
  • T. J. I’A. Bromwich, “On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe,” Proc. Lond. Math. Soc., vol. 30, pp. 98–120, 1898.
  • M. I. A. Othman and K. Lotfy, “The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation,” J. Comput. Theor. Nanosci., vol. 12, pp. 2587–2600, 2015.
  • S. N. De and P. R. Sengupta, “Surface waves under the influence of gravity,” Garlands Beitr. Geophys., vol. 85, pp. 311–318, 1976.
  • S. M. Said, “Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model,“ J. Comput. Appl. Math., vol. 291, pp. 142–157, 2016.
  • M. I. A. Othman, S. Y. Atwa, A. Jahangir, and A. Khan, “Gravitational effect on plane waves in generalized thermo-microstretch elastic solid under Green-Naghdi theory,” Appl. Math. Inf. Sci. Lett., vol. 1, pp. 25–38, 2013.
  • S. Kumar and P. C. Pal, “Wave propagation in an inhomogeneous anisotropic generalized thermoelastic solid under the effect of gravity,” Comput. Therm. Sci. Int. J., vol. 6, pp. 241–250, 2014.
  • F. S. Bayones and N. S. Hussein, “Fibre-reinforced generalized thermoelastic medium subjected to gravity field,” J. Modern Phys., vol. 6, pp. 1113–1134, 2015.
  • P. Pal and M. Kanoria, “Thermoelastic wave propagation in a transversely isotropic thick plate under Green-Naghdi theory due to gravitational field,” J. Therm. Stresses, vol. 40, pp. 470–485, 2017.
  • K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, Heidelberg: Springer-Verlag, 2010.
  • M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophys. J. Roy Astron. Soc., vol. 3, pp. 529–539, 1967.
  • M. Caputo and F. Mainardi, “Linear model of dissipation in anelastic solids,” La Rivista del Nuovo Cimento, vol. 1, pp. 161–198, 1971.
  • A. Sur and M. Kanoria, “Fractional order two-temperature thermoelasticity with finite wave speed,” Acta Mech., vol. 223, pp. 2685–2701, 2012.
  • P. Purkait, A. Sur, and M. Kanoria, “Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer,” Int. J. Adv. Appl. Math. Mech., vol. 5, no. 1, pp. 28–39, 2017.
  • Y. J. Yu, W. Hu, and X. G. Tian, “A novel generalized thermoelasticity model based on memory-dependent derivative,” Int. J. Eng. Sci., vol. 81, pp. 123–134, 2014.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Electro-thermoelasticity theory with memory-dependent derivative heat transfer,” Int. J. Eng. Sci., vol. 99, pp. 22–38, 2016.
  • M. A. Ezzat and A. A. El-Bary, “Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature,” J. Mech. Sci. Tech., vol. 29, pp. 4273–4279, 2015.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Generalized thermoelasticity with memory-dependent derivatives involving two temperatures,” Mech. Adv. Mater. Struct., vol. 23, pp. 545–553, 2016.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Modeling of memory-dependent derivative in generalized thermoelasticity,” Eur. Phys. J. Plus, vol. 131, Article 372, 2016.
  • K. Lotfy and N. Sarkar, “Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature,” Mech. Time-Depend. Mater., 2017. DOI:10.1007/s11043-017-9340-5.
  • J. L. Wang and H. F. Li, “Surpassing the fractional derivative: Concept of the memory-dependent derivative,” Comput. Math. Appl., vol. 62, pp. 1562–1567, 2011.
  • A. S. El-Karamany and M. A. Ezzat, “Thermoelastic diffusion with memory-dependent derivative,” J. Therm. Stresses, vol. 39, pp. 1035–1050, 2016.
  • A. Sur and M. Kanoria, “Modeling of memory-dependent derivative in a fibre-reinforced plate,” Thin Walled Struct., 2017. DOI:10.1016/j.tws.2017.05.005.
  • S. Chiriţǎ, C. D’Apice, and V. Zampoli, “The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence,” Int. J. Heat Mass Transfer, vol. 102, pp. 226–232, 2016.
  • V. Zampoli and A. Landi, “A domain of influence result about the time differential three-phase-lag thermoelastic model,” J. Therm. Stress, 2016. DOI:10.1080/01495739.2016.1195242.
  • A. E. Green and P. M. Nagdhi, “A unified procedure for construction of theories of deformable media. II. Generalized Continua,” Proc. R. Soc. A, vol. 448, pp. 357–377, 1995.
  • G. Honig and U. Hirdes, “A method for the numerical inversion of the Laplace transform,” J. Comput. Appl. Math., vol. 10, pp. 113–132, 1984.
  • A. J. M. Spencer, Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, 1984. ISBN:978–3-7091–4336-0.
  • S. H. Mallik and M. Kanoria, “A two dimensional problem for a transversely isotropic generalized thermoelastic thick plate with spatially varying heat source,” Eur. J. Mech. A Solids, vol. 27, pp. 607–621, 2008.
  • M. F. Markham, “Measurement of the elastic constants of fibre composites by ultrasonics,” Composites, vol. 1, no. 2, pp. 145–149, 1970.
  • A. Sur and M. Kanoria, “Propagation of thermal waves in a functionally graded thick plate,” Math. Mech. Solids, vol. 22, pp. 718–736, 2015.
  • R. Quintanilla and R. Racke, “A note on stability in three-phase-lag heat conduction,” J. Heat Mass Transfer, vol. 51, pp. 24–29, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.