104
Views
5
CrossRef citations to date
0
Altmetric
Articles

The applicability of model order reduction based on proper orthogonal decomposition to problems in dynamic thermoelasticity with multiple subdomains

, &
Pages 744-768 | Received 25 Jan 2019, Accepted 31 Jan 2019, Published online: 04 Apr 2019

References

  • B. A. Boley, “Thermally induced vibrations of beams,” J. Aeronaut. Sci, vol. 23, no. 2, pp. 179–181, 1956.
  • J. P. Jones, “Thermoelastic vibrations of a beam,” J. Acoust. Soc. Am., vol. 39, no. 3, pp. 542–548, 1966. DOI: 10.1121/1.1909926.
  • B. A. Boley, “Approximate analyses of thermally induced vibrations of beams and plates,” J. Appl. Mech., vol. 39, no. 1, pp. 212–216, 1972. DOI: 10.1115/1.3422615.
  • A. Seibert and J. Rice, “Coupled thermally induced vibrations of beams,” AIAA J., vol. 11, no. 7, pp. 1033–1035, 1973.
  • G. Manolis and D. Beskos, “Thermally induced vibrations of beam structures,” Comput. Methods Appl. Mech. Eng., vol. 21, no. 3, pp. 337–355, 1980. DOI: 10.1016/0045-7825(80)90101-2.
  • V. Danilovskaya, “Thermal stress in elastic half-space arising after a sudden heating of its boundary (in Russian),” Prikl. Mat. Mekh., vol. 14, pp. 316, 1950.
  • V. Danilovskaya, “Dynamical problem of thermoelasticity (in russian),” Prikl. Mat. Mekh., vol. 16, pp. 341, 1952.
  • H. S. Dunn, “Transient solution of a one-dimensional thermoelastic wave propagation problem,” Q. J. Mech. Appl. Math., vol. 19, no. 2, pp. 157–165, 1966. DOI: 10.1093/qjmam/19.2.157.
  • P. Puri, “Plane waves in generalized thermoelasticity,” Int. J. Eng. Sci., vol. 11, no. 7, pp. 735–744, 1973. DOI: 10.1016/0020-7225(73)90003-7.
  • R. Pinnau, “Model reduction via proper orthogonal decomposition,” in Model Order Reduction: Theory, Research Aspects and Applications. Berlin, Germany: Springer, 2008, vol. 13, pp. 95–109.
  • Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, and C. Wu, “Proper orthogonal decomposition and its applications part I: Theory,” J. Sound Vib., vol. 252, no. 3, pp. 527–544, 2002. DOI: 10.1006/jsvi.2001.4041.
  • J. Lumley, “Atmospheric turbulence and radio wave propagation,” in The Structure of Inhomogeneous Turbulent Flows. Moscow: Publishing House Nauka, 1967, pp. 166–178.
  • W. Cazemier, Proper Orthogonal Decomposition and Low Dimensional Models for Turbulent Flows. Groningen, The Netherlands: University of Groningen, 1997.
  • K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics,” SIAM J. Numer. Anal., vol. 40, no. 2, pp. 492–515, 2002. DOI: 10.1137/S0036142900382612.
  • C. Rowley, T. Colonius, and R. Murray, “Model reduction for compressible flows using pod and Galerkin projection,” Phys. D, vol. 189, no. 1-2, pp. 115–129, 2004. DOI: 10.1016/j.physd.2003.03.001.
  • C. W. Rowley, “Model reduction for fluids, using balanced proper orthogonal decomposition,” Int. J. Bifurcation Chaos, vol. 15, no. 03, pp. 997–1013, 2005. DOI: 10.1142/S0218127405012429.
  • J. Cusumano, M. Sharkady, and B. Kimble, “Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator,” Philos. Trans. R. Soc. London. A, vol. 347, no. 1683, pp. 421–438, 1994.
  • R. Kappagantu and B. Feeny, “An “optimal” modal reduction of a system with frictional excitation,” J. Sound Vib., vol. 224, no. 5, pp. 863–877, 1999. DOI: 10.1006/jsvi.1999.2165.
  • R. Białecki, A. Kassab, and A. Fic, “Proper orthogonal decomposition and modal analysis for acceleration of transient fem thermal analysis,” Int. J. Numer. Methods Eng., vol. 62, no. 6, pp. 774–797, 2005. DOI: 10.1002/nme.1205.
  • A. Fic, R. A. Białecki, and A. J. Kassab, “Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method,” Numer. Heat Transfer B, vol. 48, no. 2, pp. 103–124, 2005. DOI: 10.1080/10407790590935920.
  • G. Uytterhoeven, “Wavelets: Software and applications,” Ph.D thesis, U. Leuven Celestijnenlaan, Department of Computer Science, Belgium, 1999.
  • Y. Liang, W. Lin, H. Lee, S. Lim, K. Lee, and H. Sun, “Proper orthogonal decomposition and its applications–part ii: model reduction for mems dynamical analysis,” J. Sound Vib., vol. 256, no. 3, pp. 515–532, 2002. DOI: 10.1006/jsvi.2002.5007.
  • K. Kunisch, S. Volkwein, and L. Xie, “Hjb-pod-based feedback design for the optimal control of evolution problems,” SIAM J. Appl. Dyn. Syst., vol. 3, no. 4, pp. 701–722, 2004. DOI: 10.1137/030600485.
  • M. Hinze and S. Volkwein, “Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control,” in Dimension Reduction of Large-Scale Systems. Berlin, Germany: Springer, 2005, pp. 261–306
  • R. J. Guyan, “Reduction of stiffness and mass matrices,” AIAA J., vol. 3, no. 2, pp. 380, 1965. DOI: 10.2514/3.2874.
  • M. Paz, “Dynamic condensation,” AIAA J., vol. 22, no. 5, pp. 724–727, 1984. DOI: 10.2514/3.2874.
  • S. Volkwein, “Proper orthogonal decomposition: Theory and reduced-order modelling,” Lect Notes Univ. Konstanz, vol. 4, no. 4, pp. 1–29, 2013.
  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • M. Shimada, S. Masuri, and K. Tamma, “A novel design of an isochronous integration [iintegration] framework for first/second order multidisciplinary transient systems,” Int. J. Numer. Methods Eng., vol. 102, no. 3-4, pp. 867–891, 2015. DOI: 10.1002/nme.4715.
  • D. J. Maxam, R. Deokar, and K. K. Tamma, “A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the gssss framework involving differential algebraic equation systems,” J. Therm. Stresses, vol. 42, pp. 163–184, 2019.
  • X. Zhou and K. Tamma, “Algorithms by design with illustrations to solid and structural mechanics/dynamics,” Int. J. Numer. Methods Eng., vol. 66, no. 11, pp. 1738–1790, 2006. DOI: 10.1002/nme.1559.
  • N. M. Newmark, “A method of computation for structural dynamics,” J. Eng. Mech. Div., vol. 85, no. 3, pp. 67–94, 1959.
  • W. Wood, M. Bossak, and O. Zienkiewicz, “An alpha modification of newmark’s method,” Int. J. Numer. Methods Eng., vol. 15, no. 10, pp. 1562–1566, 1980. DOI: 10.1002/nme.1620151011.
  • H. M. Hilber, T. J. Hughes, and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthquake Eng. Struct. Dynam., vol. 5, no. 3, pp. 283–292, 1977. DOI: 10.1002/eqe.4290050306.
  • H. Shao, “The studying on the direct time integration algorithms for structural dynamics response,” Master’s thesis, Zhejiang University, Hangzhou, China, 1987.
  • H. Shao, and C. Cai, “The direct integration three-parameters optimal schemes for structural dynamics,” presented at Proceeding of the International Conference: Machine Dynamics and Engineering Applications, Xian Jiaotong University Press, 1988, pp. C16–C20. See also Chinese Journal of Applied Mechanics (in Chinese), vol. 5, no. 4, Dec. 1988.
  • J. Chung and G. Hulbert, “A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method,” J. Appl. Mech., vol. 60, no. 2, pp. 371–375, 1993. DOI: 10.1115/1.2900803.
  • J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Math. Proc. Cambridge Philos. Soc., vol. 43, no. 01, 1947, pp. 50–67. DOI: 10.1017/S0305004100023197.
  • C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, NJ: Prentice Hall PTR, 1971.
  • S. Masuri, M. Sellier, X. Zhou, and K. Tamma, “Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation,” Int. J. Numer. Methods Eng., vol. 88, no. 13, pp. 1411–1448, 2011. DOI: 10.1002/nme.3228.
  • R. Deokar, M. Shimada, C. Lin, and K. K. Tamma, “On the treatment of high-frequency issues in numerical simulation for dynamic systems by model order reduction via the proper orthogonal decomposition,” Comput. Methods Appl. Mech. Eng., vol. 325, pp. 139–154, 2017. DOI: 10.1016/j.cma.2017.07.003.
  • X. Zhong and W. Sun, “A adaptive reduced-dimensional discrete element method for non-dissipative explicit dynamic responses of granular materials with high-frequency noises,” Int. J. Multiscale Comput. Eng., vol. 16, no. 4, pp. 345–366, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.