254
Views
9
CrossRef citations to date
0
Altmetric
Articles

Thermo-hygro-mechanical bending and vibration of functionally graded material microbeams with microporosity defect

, , &
Pages 815-834 | Received 06 Aug 2018, Accepted 19 Feb 2019, Published online: 01 Apr 2019

References

  • M. Koizumi, “FGM activities in Japan,” Compos. Part B Eng., vol. 28, no. 1–2, pp. 1–4, 1997. DOI: 10.1016/S1359-8368(96)00016-9.
  • Y. Q. Wang and J. W. Zu, “Nonlinear dynamics of a translational FGM plate with strong mode interaction,” Int. J. Struct. Stab. Dyn., vol. 18, no. 03, pp. 1850031, 2018. DOI: 10.1142/S0219455418500311.
  • Y. Q. Wang and J. W. Zu, “Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid,” Compos. Struct., vol. 164, pp. 130–144, 2017. DOI: 10.1016/j.compstruct.2016.12.053.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 385–414, 1962. DOI: 10.1007/BF00253945.
  • S. K. Park and X.-L. Gao, “Bernoulli–Euler beam model based on a modified couple stress theory,” J. Micromech. Microeng., vol. 16, no. 11, pp. 2355–2359, 2006. DOI: 10.1088/0960-1317/16/11/015.
  • L. L. Ke and Y. S. Wang, “Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory,” Compos. Struct., vol. 93, no. 2, pp. 342–350, 2011. DOI: 10.1016/j.compstruct.2010.09.008.
  • B. Akgöz and Ö. Civalek, “Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory,” Compos. Struct., vol. 98, pp. 314–322, 2013. DOI: 10.1016/j.compstruct.2012.11.020.
  • M. Mohammad-Abadi and A. R. Daneshmehr, “Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions,” Int. J. Eng. Sci., vol. 74, pp. 1–14, 2014. DOI: 10.1016/j.ijengsci.2013.08.010.
  • J. Lei, Y. He, B. Zhang, Z. Gan, and P. Zeng, “Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory,” Int. J. Eng. Sci., vol. 72, pp. 36–52, 2013. DOI: 10.1016/j.ijengsci.2013.06.012.
  • M. Şimşek and J. N. Reddy, “Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory,” Int. J. Eng. Sci, vol. 64, pp. 37–53, 2013. DOI: 10.1016/j.ijengsci.2012.12.002.
  • R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, and S. Sahmani, “Size-dependent bending, buckling and free vibration of functionally graded timoshenko microbeams based on the most general strain gradient theory,” Compos. Struct., vol. 100, pp. 385–397, 2013. DOI: 10.1016/j.compstruct.2012.12.048.
  • H. T. Thai, T. P. Vo, T. K. Nguyen, and J. Lee, “Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory,” Compos. Struct., vol. 123, pp. 337–349, 2015. DOI: 10.1016/j.compstruct.2014.11.065.
  • L. Li, X. Li, and Y. Hu, “Free vibration analysis of nonlocal strain gradient beams made of functionally graded material,” Int. J. Eng. Sci, vol. 102, pp. 77–92, 2016. DOI: 10.1016/j.ijengsci.2016.02.010.
  • L. L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai, “Nonlinear free vibration of size-dependent functionally graded microbeams,” Int. J. Eng. Sci, vol. 50, no. 1, pp. 256–267, 2012. DOI: 10.1016/j.ijengsci.2010.12.008.
  • Y. S. Li, W. J. Feng, and Z. Y. Cai, “Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory,” Compos. Struct., vol. 115, no. 1, pp. 41–50, 2014. DOI: 10.1016/j.compstruct.2014.04.005.
  • P. K. Parhi, S. K. Bhattacharyya, and P. K. Sinha, “Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells,” J. Sound Vib., vol. 248, no. 2, pp. 195–214, 2001. DOI: 10.1006/jsvi.2000.3506.
  • F. Z. Jouneghani, R. Dimitri, and F. Tornabene, “Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings,” Compos. Part B Eng., vol. 152, pp. 71–78, 2018. DOI: 10.1016/j.compositesb.2018.06.023.
  • Y. Beldjelili, A. Tounsi, and S. R. Mahmoud, “Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory,” Smart Struct. Syst, vol. 18, no. 4, pp. 755–786, 2016. DOI: 10.12989/sss.2016.18.4.755.
  • F. Ebrahimi and M. R. Barati, “A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 9, pp. 1–14, 2016.
  • F. Ebrahimi and M. R. Barati, “Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams,” Mech. Adv. Mater. Struct., vol. 24, no. 11, pp. 924–936, 2017. DOI: 10.1080/15376494.2016.1196795.
  • C. Y. Lee and J. H. Kim, “Hygrothermal postbuckling behavior of functionally graded plates,” Compos. Struct., vol. 95, pp. 278–282, 2013. DOI: 10.1016/j.compstruct.2012.07.010.
  • M. Zidi, A. Tounsi, M. S. A. Houari, E. A. Adda Bedia, and O. Anwar Bég, “Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory,” Aerosp. Sci. Technol, vol. 34, no. 1, pp. 24–34, 2014. DOI: 10.1016/j.ast.2014.02.001.
  • F. A. Fazzolari and E. Carrera, “Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions,” J. Therm. Stress, vol. 37, no. 12, pp. 1449–1481, 2014. DOI: 10.1080/01495739.2014.937251.
  • S. A. Al Khateeb and A. M. Zenkour, “A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment,” Compos. Struct., vol. 111, no. 1, pp. 240–248, 2014. DOI: 10.1016/j.compstruct.2013.12.033.
  • M. H. Mansouri and M. Shariyat, “Biaxial thermo-mechanical buckling of orthotropic auxetic FGM plates with temperature and moisture dependent material properties on elastic foundations,” Compos. Part B Eng., vol. 83, pp. 88–104, 2015. DOI: 10.1016/j.compositesb.2015.08.030.
  • T. K. Nguyen, B. D. Nguyen, T. P. Vo, and H. T. Thai, “Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams,” Compos. Struct., vol. 176, pp. 1050–1060, 2017. DOI: 10.1016/j.compstruct.2017.06.036.
  • M. Mohammadi, M. Safarabadi, A. Rastgoo, and A. Farajpour, “Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment,” Acta Mech., vol. 227, no. 8, pp. 2207–2232, 2016. DOI: 10.1007/s00707-016-1623-4.
  • M. Sobhy, “Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory,” Appl. Math. Model, vol. 40, no. 1, pp. 85–99, 2016. DOI: 10.1016/j.apm.2015.04.037.
  • J. Zhu, Z. Lai, Z. Yin, J. Jeon, and S. Lee, “Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy,” Mater. Chem. Phys, vol. 68, no. 1–3, pp. 130–135, 2001. DOI: 10.1016/S0254-0584(00)00355-2.
  • N. Wattanasakulpong, B. Gangadhara Prusty, D. W. Kelly, and M. Hoffman, “Free vibration analysis of layered functionally graded beams with experimental validation,” Mater. Des., vol. 36, pp. 182–190, 2012. DOI: 10.1016/j.matdes.2011.10.049.
  • N. Wattanasakulpong and A. Chaikittiratana, “Flexural vibration of imperfect functionally graded beams based on timoshenko beam theory: Chebyshev collocation method,” Meccanica, vol. 50, no. 5, pp. 1331–1342, 2015. DOI: 10.1007/s11012-014-0094-8.
  • Y. Q. Wang, C. Ye, and J. W. Zu, “Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets,” Aerosp. Sci. Technol., vol. 85, pp. 359–370, 2019.
  • Y. Q. Wang and J. W. Zu, “Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment,” Aerosp. Sci. Technol., vol. 69, pp. 550–562, 2017. DOI: 10.1016/j.ast.2017.07.023.
  • Y. Q. Wang, “Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state,” Acta Astronaut., vol. 143, pp. 263–271, 2018. DOI: 10.1016/j.actaastro.2017.12.004.
  • Y. S. Touloukian, Thermophysical Properties of High Temperature Solid Materials. New York: Macmillan, 1967.
  • J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Therm. Stress, vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.
  • C. T. Loy, K. Y. Lam, and J. N. Reddy, “Vibration of functionally graded cylindrical shells,” Int. J. Mech. Sci., vol. 41, no. 3, pp. 309–324, 1999. DOI: 10.1016/S0020-7403(98)00054-X.
  • M. Touratier, “An efficient standard plate theory,” Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991. DOI: 10.1016/0020-7225(91)90165-Y.
  • J. N. Reddy, “Microstructure-dependent couple stress theories of functionally graded beams,” J. Mech. Phys. Solids, vol. 59, no. 11, pp. 2382–2399, 2011. DOI: 10.1016/j.jmps.2011.06.008.
  • B. Akgöz and Ö. Civalek, “A size-dependent shear deformation beam model based on the strain gradient elasticity theory,” Int. J. Eng. Sci., vol. 70, pp. 1–14, 2013. DOI: 10.1016/j.ijengsci.2013.04.004.
  • H. M. Ma, X. L. Gao, and J. N. Reddy, “A microstructure-dependent timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3379–3391, 2008. DOI: 10.1016/j.jmps.2008.09.007.
  • B. Wang, J. Zhao, and S. Zhou, “A micro scale timoshenko beam model based on strain gradient elasticity theory,” Eur. J. Mech. A/Solids, vol. 29, no. 4, pp. 591–599, 2010. DOI: 10.1016/j.euromechsol.2009.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.