450
Views
3
CrossRef citations to date
0
Altmetric
Articles

Multi-scale damage modeling of 3D orthogonal woven carbon-carbon composite at elevated temperatures

, &
Pages 787-800 | Received 25 Feb 2019, Accepted 07 Mar 2019, Published online: 05 Apr 2019

References

  • A. Shigang, F. Daining, H. Rujie, and P. Yongmao, “Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites,” Compos. Part B, vol. 71, pp. 113–121, 2015. DOI: 10.1016/j.compositesb.2014.11.003.
  • F. Liu, Q. G. Fu, F. L. Zhao, G. D. Sun, and H. J. Li, “Internal friction vs. thermal shock in C/C composites,” Compos. Part. B, vol. 106, pp. 59–65, 2016. DOI: 10.1016/j.compositesb.2016.06.078.
  • J. Chen, et al, “Failure behavior investigation of a unidirectional carbon-carbon composite,” Mater. Des., vol. 55, pp. 846–850, 2014. DOI: 10.1016/j.matdes.2013.10.058.
  • W. H. Xie, et al., “High velocity impact tests on high temperature carbon-carbon composites,” Compos. Part. B, vol. 98, pp. 30–38, 2016. DOI: 10.1016/j.compositesb.2016.05.031.
  • D. S. Li, Q. Q. Yao, N. Jiang, and L. Jiang, “Bend properties and failure mechanism of a carbon-carbon composite with a 3D needle-punched preform at room and high temperatures,” New Carbon Mater., vol. 31, no. 4, pp. 437–444, 2016. DOI: 10.1016/S1872-5805(16)60023-9.
  • D. S. Li, G. Luo, Q. Q. Yao, N. Jiang, and L. Jiang, “High temperature compression properties and failure mechanism of 3D needle-punched carbon-carbon composites,” Mater. Sci. Eng. A, vol. 621, pp. 105–110, 2015. DOI: 10.1016/j.msea.2014.10.060.
  • N. Sundaram, R. W. Trice, and K. J. Bowman, “Mechanical behavior of carbon-carbon composites at room and elevated temperatures,” in Advances in Ceramic Matrix Composites IX. Hoboken, NJ, USA: John Wiley & Sons, 2003, pp. 251–266.
  • C. D. Liu, L. F. Cheng, X. G. Luan, and H. Mei, “High-temperature fatigue behavior of SiC-coated carbon/carbon composites in oxidizing atmosphere,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 481–487, 2009. DOI: 10.1016/j.jeurceramsoc.2008.06.014.
  • C. R. Thomas, Essentials of Carbon–Carbon Composites. Cambridge, UK: Royal Society of Chemistry, 1993.
  • H. Hatta, Y. Kogo, and A. Okura, “Research Report for New Energy and Industrial Technology Development Organization,” NEDO-ITK-9209, Tokyo, Japan, 1993.
  • K. Goto, H. Hatta, M. Oe, and T. Koizumi, “Tensile strength and deformation of a two-dimensional carbon-carbon composite at elevated temperature,” J. Am. Ceram., vol. 86, no. 12, pp. 2129–2135, 2003. DOI: 10.1111/j.1151-2916.2003.tb03620.x.
  • Y. Kogo, H. Hatta, A. Okura, M. Fujikura, and Y. Seimiya, “Flexural and interlaminar shear properties of C/C composite at elevated temperatures,” Carbon, vol. 1995, no. 166, pp. 40–46, 1995. DOI: 10.7209/tanso.1995.40.
  • S. Sato, A. Kurumada, H. Iwaki, and Y. Komatsu, “Tensile properties and fracture toughness of carbon-fiber felt reinforced carbon composites at high temperature,” Carbon, vol. 27, no. 6, pp. 791–801, 1989. DOI: 10.1016/0008-6223(89)90029-8.
  • H. Kobayashi, K. Goto, H. Hatta, M. Koyama, and H. Fukuda, “Tensile strength of carbon-carbon composites at high temperature up to 2773K,” In ICCM17, 2009.
  • K. Goto, H. Ohkita, H. Hatta, H. Iseki, and Y. Kogo, “Tensile strength and creep behavior of carbon-carbon composites at elevated temperatures,” In ICCM16, 2007.
  • K. F. Yan, C. Y. Zhang, S. R. Qiao, D. Han, and M. Li, “In-plane shear strength of a carbon/carbon composite at different loading rates and temperatures,” Mater. Sci. Eng. A, vol. 528, no. 3, pp. 1458–1462, 2011. DOI: 10.1016/j.msea.2010.10.047.
  • V. I. Vettegren, et al, “Temperature dependences of the strengths of a carbon fiber and a three-dimensional reinforced carbon-carbon composite,” Tech. Phys., vol. 53, no. 1, pp. 59–63, 2008. DOI: 10.1134/S1063784208010118.
  • P. Laborde, B. Toson, and M. Odunlami, “High temperature damage model for carbon-carbon composites,” Eur. J. Mech. A-Solids, vol. 30, no. 3, pp. 256–268, 2011. DOI: 10.1016/j.euromechsol.2010.12.014.
  • A. Sur, P. Pal, and M. Kanoria, “Modeling of memory-dependent derivative in a ber-reinforced plate under gravitational effect,” J. Therm. Stresses, vol. 41, no. 8, pp. 973–992, 2018. DOI: 10.1080/01495739.2018.1447316.
  • Y. F. Chen, et al, “Yield and failure theory for unidirectional polymer-matrix composites,” Compos. Part B, vol. 164, pp. 612–619, 2019. DOI: 10.1016/j.compositesb.2019.01.071.
  • S. K. Liu, et al, “Numerical analyses on thermal stress distribution induced from impact compression in 3D carbon fiber epoxy braided composite materials,” J. Therm. Stresses, vol. 41, no. 7, pp. 903–919, 2018. DOI: 10.1080/01495739.2018.1437000.
  • D. Punera, T. Kant, and Y. M. Desai, “Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models,” J. Therm. Stresses, vol. 41, no. 1, pp. 54–79, 2018. DOI: 10.1080/01495739.2017.1373379.
  • S. G. Ai, H. L. Fu, R. J. He, and Y. M. Pei, “Multi-scale modeling of thermal expansion coefficients of C/C composites at high temperature,” Mater. Des., vol. 82, pp. 181–188, 2015. DOI: 10.1016/j.matdes.2015.05.061.
  • C. Sauder, J. Lamon, and R. Pailler, “Thermomechanical properties of carbon fibres at high temperatures (up to 2000 °C),” Compos. Sci. Technol., vol. 62, no. 4, pp. 499–504, 2002. DOI: 10.1016/S0266-3538(01)00140-3.
  • C. Pradere, J. C. Bastale, J. M. Goyhénèche, R. Pailler, and S. Dilhaire, “Thermal properties of carbon fibres at very high temperature,” Carbon, vol. 47, no. 3, pp. 737–743, 2009. DOI: 10.1016/j.carbon.2008.11.015.
  • C. Pradere and C. Sauder, “Transverse and longitudinal coefficient of thermal expansion of carbon fibres at high temperatures (300–2500 K),” Carbon, vol. 46, no. 14, pp. 1874–1884, 2008. DOI: 10.1016/j.carbon.2008.07.035.
  • C. Sauder, J. Lamon, and R. Pailler, “The tensile properties of carbon matrices at temperatures up to 2200 °C,” Carbon, vol. 43, no. 10, pp. 2054–2065, 2005. DOI: 10.1016/j.carbon.2005.03.020.
  • D. L. Jiang, L. T. Li, S. X. Ouyang, and J. L. Shi, China Materials Engineering Canon: Inorganic Non-metallic Materials Engineering. Beijing, China: Chemical Industry Press, 2006, vol. 9, pp. 470–472 [in Chinese].
  • C. C. Christos, “Mechanics of composite materials: past, present, and future,” NASA Technical Memorandum 100793. In 21st Annual meeting of the society for engineering science, Blacksburg, Virginia, October 15–17, 1984.
  • S. Dai and P. R. Cunningham, “Multi-scale damage modelling of 3D woven composites under uniaxial tension,” Compos. Struct., vol. 142, pp. 298–312, 2016. DOI: 10.1016/j.compstruct.2016.01.103.
  • Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., vol. 7, no. 4, pp. 448–464, 1973. DOI: 10.1177/002199837300700404.
  • Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3153664.
  • S. G. Ai, Y. Q. Mao, Y. M. Pei, D. N. Fang, and L. Q. Tang, “Numerical analysis of thermodynamic behaviour of through-thickness stitched sandwich laminate,” Appl. Compos. Mater., vol. 20, pp. 1161–1171, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.